ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexgt0sr Unicode version

Theorem recexgt0sr 6950
Description: The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
Assertion
Ref Expression
recexgt0sr  |-  ( 0R 
<R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) )
Distinct variable group:    x, A

Proof of Theorem recexgt0sr
Dummy variables  y  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 6915 . . . 4  |-  <R  C_  ( R.  X.  R. )
21brel 4410 . . 3  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 112 . 2  |-  ( 0R 
<R  A  ->  A  e. 
R. )
4 df-nr 6904 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
5 breq2 3789 . . . 4  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( 0R  <R  [ <. y ,  z >. ]  ~R  <->  0R 
<R  A ) )
6 oveq1 5539 . . . . . . 7  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( [ <. y ,  z >. ]  ~R  .R  x )  =  ( A  .R  x ) )
76eqeq1d 2089 . . . . . 6  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  ( A  .R  x )  =  1R ) )
87anbi2d 451 . . . . 5  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( ( 0R  <R  x  /\  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) 
<->  ( 0R  <R  x  /\  ( A  .R  x
)  =  1R )
) )
98rexbidv 2369 . . . 4  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( E. x  e. 
R.  ( 0R  <R  x  /\  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) 
<->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x
)  =  1R )
) )
105, 9imbi12d 232 . . 3  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. y ,  z >. ]  ~R  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) )  <->  ( 0R  <R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) ) ) )
11 gt0srpr 6925 . . . . 5  |-  ( 0R 
<R  [ <. y ,  z
>. ]  ~R  <->  z  <P  y )
12 ltexpri 6803 . . . . 5  |-  ( z 
<P  y  ->  E. w  e.  P.  ( z  +P.  w )  =  y )
1311, 12sylbi 119 . . . 4  |-  ( 0R 
<R  [ <. y ,  z
>. ]  ~R  ->  E. w  e.  P.  ( z  +P.  w )  =  y )
14 recexpr 6828 . . . . . . 7  |-  ( w  e.  P.  ->  E. v  e.  P.  ( w  .P.  v )  =  1P )
1514adantl 271 . . . . . 6  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  w  e.  P. )  ->  E. v  e.  P.  ( w  .P.  v )  =  1P )
16 1pr 6744 . . . . . . . . . . . . . 14  |-  1P  e.  P.
17 addclpr 6727 . . . . . . . . . . . . . 14  |-  ( ( v  e.  P.  /\  1P  e.  P. )  -> 
( v  +P.  1P )  e.  P. )
1816, 17mpan2 415 . . . . . . . . . . . . 13  |-  ( v  e.  P.  ->  (
v  +P.  1P )  e.  P. )
19 enrex 6914 . . . . . . . . . . . . . 14  |-  ~R  e.  _V
2019, 4ecopqsi 6184 . . . . . . . . . . . . 13  |-  ( ( ( v  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
2118, 16, 20sylancl 404 . . . . . . . . . . . 12  |-  ( v  e.  P.  ->  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
2221adantl 271 . . . . . . . . . . 11  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  [ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  e.  R. )
2322ad2antlr 472 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
24 simprr 498 . . . . . . . . . . . 12  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  v  e.  P. )
2524adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  v  e.  P. )
26 ltaddpr 6787 . . . . . . . . . . . . . 14  |-  ( ( 1P  e.  P.  /\  v  e.  P. )  ->  1P  <P  ( 1P  +P.  v ) )
2716, 26mpan 414 . . . . . . . . . . . . 13  |-  ( v  e.  P.  ->  1P  <P  ( 1P  +P.  v
) )
28 addcomprg 6768 . . . . . . . . . . . . . 14  |-  ( ( 1P  e.  P.  /\  v  e.  P. )  ->  ( 1P  +P.  v
)  =  ( v  +P.  1P ) )
2916, 28mpan 414 . . . . . . . . . . . . 13  |-  ( v  e.  P.  ->  ( 1P  +P.  v )  =  ( v  +P.  1P ) )
3027, 29breqtrd 3809 . . . . . . . . . . . 12  |-  ( v  e.  P.  ->  1P  <P  ( v  +P.  1P ) )
31 gt0srpr 6925 . . . . . . . . . . . 12  |-  ( 0R 
<R  [ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  <->  1P  <P  ( v  +P.  1P ) )
3230, 31sylibr 132 . . . . . . . . . . 11  |-  ( v  e.  P.  ->  0R  <R  [ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )
3325, 32syl 14 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  0R  <R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )
3418, 16jctir 306 . . . . . . . . . . . . . . . 16  |-  ( v  e.  P.  ->  (
( v  +P.  1P )  e.  P.  /\  1P  e.  P. ) )
3534anim2i 334 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( y  e.  P.  /\  z  e.  P. )  /\  (
( v  +P.  1P )  e.  P.  /\  1P  e.  P. ) ) )
3635adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( (
y  e.  P.  /\  z  e.  P. )  /\  ( ( v  +P. 
1P )  e.  P.  /\  1P  e.  P. )
) )
37 mulsrpr 6923 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( ( v  +P. 
1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  )
3836, 37syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  )
3938adantlrl 465 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R 
[ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) ) >. ]  ~R  )
40 oveq1 5539 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  +P.  w )  =  y  ->  (
( z  +P.  w
)  .P.  v )  =  ( y  .P.  v ) )
4140eqcomd 2086 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  +P.  w )  =  y  ->  (
y  .P.  v )  =  ( ( z  +P.  w )  .P.  v ) )
4241ad2antll 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( y  .P.  v )  =  ( ( z  +P.  w
)  .P.  v )
)
43 mulcomprg 6770 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f  e.  P.  /\  h  e.  P. )  ->  ( f  .P.  h
)  =  ( h  .P.  f ) )
44433adant2 957 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  .P.  h )  =  ( h  .P.  f ) )
45 mulcomprg 6770 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( g  e.  P.  /\  h  e.  P. )  ->  ( g  .P.  h
)  =  ( h  .P.  g ) )
46453adant1 956 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
g  .P.  h )  =  ( h  .P.  g ) )
4744, 46oveq12d 5550 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  .P.  h
)  +P.  ( g  .P.  h ) )  =  ( ( h  .P.  f )  +P.  (
h  .P.  g )
) )
48 distrprg 6778 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( h  e.  P.  /\  f  e.  P.  /\  g  e.  P. )  ->  (
h  .P.  ( f  +P.  g ) )  =  ( ( h  .P.  f )  +P.  (
h  .P.  g )
) )
49483coml 1145 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
h  .P.  ( f  +P.  g ) )  =  ( ( h  .P.  f )  +P.  (
h  .P.  g )
) )
50 simp3 940 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  h  e.  P. )
51 addclpr 6727 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
52513adant3 958 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  +P.  g )  e.  P. )
53 mulcomprg 6770 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( h  e.  P.  /\  ( f  +P.  g
)  e.  P. )  ->  ( h  .P.  (
f  +P.  g )
)  =  ( ( f  +P.  g )  .P.  h ) )
5450, 52, 53syl2anc 403 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
h  .P.  ( f  +P.  g ) )  =  ( ( f  +P.  g )  .P.  h
) )
5547, 49, 543eqtr2rd 2120 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  .P.  h )  =  ( ( f  .P.  h )  +P.  ( g  .P.  h
) ) )
5655adantl 271 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
( f  +P.  g
)  .P.  h )  =  ( ( f  .P.  h )  +P.  ( g  .P.  h
) ) )
57 simplr 496 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  z  e.  P. )
58 simprl 497 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  w  e.  P. )
5956, 57, 58, 24caovdird 5699 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  +P.  w )  .P.  v )  =  ( ( z  .P.  v
)  +P.  ( w  .P.  v ) ) )
60 oveq2 5540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  .P.  v )  =  1P  ->  (
( z  .P.  v
)  +P.  ( w  .P.  v ) )  =  ( ( z  .P.  v )  +P.  1P ) )
6159, 60sylan9eq 2133 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( w  .P.  v )  =  1P )  ->  ( (
z  +P.  w )  .P.  v )  =  ( ( z  .P.  v
)  +P.  1P )
)
6261adantrr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( z  +P.  w )  .P.  v )  =  ( ( z  .P.  v
)  +P.  1P )
)
6342, 62eqtrd 2113 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( y  .P.  v )  =  ( ( z  .P.  v
)  +P.  1P )
)
6463oveq1d 5547 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( y  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  1P )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) ) )
65 mulclpr 6762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  v
)  e.  P. )
6657, 24, 65syl2anc 403 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  v )  e.  P. )
6716a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  1P  e.  P. )
68 simpll 495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  y  e.  P. )
69 mulclpr 6762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
7068, 16, 69sylancl 404 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  1P )  e.  P. )
71 mulclpr 6762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  P.  /\  1P  e.  P. )  -> 
( z  .P.  1P )  e.  P. )
7257, 16, 71sylancl 404 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  1P )  e.  P. )
73 addclpr 6727 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  .P.  1P )  e.  P.  /\  (
z  .P.  1P )  e.  P. )  ->  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) )  e. 
P. )
7470, 72, 73syl2anc 403 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) )  e.  P. )
75 addcomprg 6768 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
7675adantl 271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
77 addassprg 6769 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
7877adantl 271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
7966, 67, 74, 76, 78caov32d 5701 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
( z  .P.  v
)  +P.  1P )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P ) )
8079adantr 270 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( ( z  .P.  v )  +P.  1P )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P ) )
8164, 80eqtrd 2113 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( y  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P ) )
8281oveq1d 5547 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( ( y  .P.  v )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P. 
1P )  =  ( ( ( ( z  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  +P.  1P )  +P.  1P ) )
83 addclpr 6727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  .P.  v
)  e.  P.  /\  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
)  e.  P. )  ->  ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  e.  P. )
8466, 74, 83syl2anc 403 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  e.  P. )
8584adantr 270 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( z  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  e.  P. )
8616a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  1P  e.  P. )
87 addassprg 6769 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  ( ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P )  +P. 
1P )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
8885, 86, 86, 87syl3anc 1169 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( ( ( z  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P. 
1P )  +P.  1P )  =  ( (
( z  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
8982, 88eqtrd 2113 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( ( y  .P.  v )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P. 
1P )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
90 distrprg 6778 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  v  e.  P.  /\  1P  e.  P. )  ->  (
y  .P.  ( v  +P.  1P ) )  =  ( ( y  .P.  v )  +P.  (
y  .P.  1P )
) )
9168, 24, 67, 90syl3anc 1169 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  ( v  +P.  1P ) )  =  ( ( y  .P.  v
)  +P.  ( y  .P.  1P ) ) )
9291oveq1d 5547 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P.  1P ) )  =  ( ( ( y  .P.  v )  +P.  (
y  .P.  1P )
)  +P.  ( z  .P.  1P ) ) )
93 mulclpr 6762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
9468, 24, 93syl2anc 403 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  v )  e.  P. )
95 addassprg 6769 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  .P.  v
)  e.  P.  /\  ( y  .P.  1P )  e.  P.  /\  (
z  .P.  1P )  e.  P. )  ->  (
( ( y  .P.  v )  +P.  (
y  .P.  1P )
)  +P.  ( z  .P.  1P ) )  =  ( ( y  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) ) )
9694, 70, 72, 95syl3anc 1169 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
( y  .P.  v
)  +P.  ( y  .P.  1P ) )  +P.  ( z  .P.  1P ) )  =  ( ( y  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) ) )
9792, 96eqtrd 2113 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P.  1P ) )  =  ( ( y  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) ) )
9897oveq1d 5547 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) )  +P. 
1P )  =  ( ( ( y  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P ) )
9998adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  +P. 
1P )  =  ( ( ( y  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P ) )
100 distrprg 6778 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  P.  /\  v  e.  P.  /\  1P  e.  P. )  ->  (
z  .P.  ( v  +P.  1P ) )  =  ( ( z  .P.  v )  +P.  (
z  .P.  1P )
) )
10157, 24, 67, 100syl3anc 1169 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  ( v  +P.  1P ) )  =  ( ( z  .P.  v
)  +P.  ( z  .P.  1P ) ) )
102101oveq2d 5548 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  =  ( ( y  .P.  1P )  +P.  ( ( z  .P.  v )  +P.  ( z  .P.  1P ) ) ) )
10370, 66, 72, 76, 78caov12d 5702 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  1P )  +P.  ( ( z  .P.  v )  +P.  (
z  .P.  1P )
) )  =  ( ( z  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) ) )
104102, 103eqtrd 2113 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  =  ( ( z  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) ) )
105104oveq1d 5547 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
106105adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
10789, 99, 1063eqtr4d 2123 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  +P. 
1P )  =  ( ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
10824, 16, 17sylancl 404 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( v  +P.  1P )  e.  P. )
109 mulclpr 6762 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  P.  /\  ( v  +P.  1P )  e.  P. )  ->  ( y  .P.  (
v  +P.  1P )
)  e.  P. )
11068, 108, 109syl2anc 403 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  ( v  +P.  1P ) )  e.  P. )
111 addclpr 6727 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  .P.  (
v  +P.  1P )
)  e.  P.  /\  ( z  .P.  1P )  e.  P. )  ->  ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  e.  P. )
112110, 72, 111syl2anc 403 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P.  1P ) )  e.  P. )
113104, 84eqeltrd 2155 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  e.  P. )
114 addclpr 6727 . . . . . . . . . . . . . . . . 17  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
11516, 16, 114mp2an 416 . . . . . . . . . . . . . . . 16  |-  ( 1P 
+P.  1P )  e.  P.
116115a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( 1P  +P.  1P )  e.  P. )
117 enreceq 6913 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) )  e.  P.  /\  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  +P.  1P )  =  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
118112, 113, 116, 67, 117syl22anc 1170 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
) ,  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  +P.  1P )  =  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
119118adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( [ <. ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  +P.  1P )  =  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
120107, 119mpbird 165 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
12139, 120eqtrd 2113 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R 
[ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
122 df-1r 6909 . . . . . . . . . . 11  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
123121, 122syl6eqr 2131 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R 
[ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )  =  1R )
124 breq2 3789 . . . . . . . . . . . 12  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( 0R  <R  x  <->  0R  <R  [
<. ( v  +P.  1P ) ,  1P >. ]  ~R  ) )
125 oveq2 5540 . . . . . . . . . . . . 13  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  ( [
<. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  ) )
126125eqeq1d 2089 . . . . . . . . . . . 12  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  ( [ <. y ,  z
>. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  1R )
)
127124, 126anbi12d 456 . . . . . . . . . . 11  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( 0R  <R  x  /\  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) 
<->  ( 0R  <R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  /\  ( [ <. y ,  z >. ]  ~R  .R 
[ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )  =  1R ) ) )
128127rspcev 2701 . . . . . . . . . 10  |-  ( ( [ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  e.  R.  /\  ( 0R  <R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  /\  ( [ <. y ,  z >. ]  ~R  .R 
[ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )  =  1R ) )  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
)
12923, 33, 123, 128syl12anc 1167 . . . . . . . . 9  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  (
w  e.  P.  /\  v  e.  P. )
)  /\  ( (
w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y ) )  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
)
130129exp32 357 . . . . . . . 8  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
w  .P.  v )  =  1P  ->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) ) ) )
131130anassrs 392 . . . . . . 7  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  w  e.  P. )  /\  v  e.  P. )  ->  (
( w  .P.  v
)  =  1P  ->  ( ( z  +P.  w
)  =  y  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) ) )
132131rexlimdva 2477 . . . . . 6  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  w  e.  P. )  ->  ( E. v  e.  P.  ( w  .P.  v )  =  1P 
->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) ) )
13315, 132mpd 13 . . . . 5  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  w  e.  P. )  ->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) ) )
134133rexlimdva 2477 . . . 4  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. w  e. 
P.  ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) )
13513, 134syl5 32 . . 3  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( 0R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) )
1364, 10, 135ecoptocl 6216 . 2  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) ) )
1373, 136mpcom 36 1  |-  ( 0R 
<R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   <.cop 3401   class class class wbr 3785  (class class class)co 5532   [cec 6127   P.cnp 6481   1Pc1p 6482    +P. cpp 6483    .P. cmp 6484    <P cltp 6485    ~R cer 6486   R.cnr 6487   0Rc0r 6488   1Rc1r 6489    .R cmr 6492    <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-iltp 6660  df-enr 6903  df-nr 6904  df-mr 6906  df-ltr 6907  df-0r 6908  df-1r 6909
This theorem is referenced by:  recexsrlem  6951  axprecex  7046
  Copyright terms: Public domain W3C validator