| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcm1k | Unicode version | ||
| Description: The proportion of one
binomial coefficient to another with |
| Ref | Expression |
|---|---|
| bcm1k |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 9048 |
. . . . . . . . 9
| |
| 2 | nnuz 8654 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl6eleqr 2172 |
. . . . . . . 8
|
| 4 | 3 | nnnn0d 8341 |
. . . . . . 7
|
| 5 | 4 | faccld 9663 |
. . . . . 6
|
| 6 | 5 | nncnd 8053 |
. . . . 5
|
| 7 | fznn0sub 9075 |
. . . . . . . . . 10
| |
| 8 | nn0p1nn 8327 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . . 9
|
| 10 | 9 | nnnn0d 8341 |
. . . . . . . 8
|
| 11 | 10 | faccld 9663 |
. . . . . . 7
|
| 12 | elfznn 9073 |
. . . . . . . 8
| |
| 13 | nnm1nn0 8329 |
. . . . . . . 8
| |
| 14 | faccl 9662 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | 3syl 17 |
. . . . . . 7
|
| 16 | 11, 15 | nnmulcld 8087 |
. . . . . 6
|
| 17 | 16 | nncnd 8053 |
. . . . 5
|
| 18 | 9 | nncnd 8053 |
. . . . 5
|
| 19 | 12 | nncnd 8053 |
. . . . 5
|
| 20 | 16 | nnap0d 8084 |
. . . . 5
|
| 21 | 12 | nnap0d 8084 |
. . . . 5
|
| 22 | 6, 17, 18, 19, 20, 21 | divmuldivapd 7918 |
. . . 4
|
| 23 | elfzel2 9043 |
. . . . . . . . . 10
| |
| 24 | 23 | zcnd 8470 |
. . . . . . . . 9
|
| 25 | 1cnd 7135 |
. . . . . . . . 9
| |
| 26 | 24, 19, 25 | subsubd 7447 |
. . . . . . . 8
|
| 27 | 26 | fveq2d 5202 |
. . . . . . 7
|
| 28 | 27 | oveq1d 5547 |
. . . . . 6
|
| 29 | 28 | oveq2d 5548 |
. . . . 5
|
| 30 | 26 | oveq1d 5547 |
. . . . 5
|
| 31 | 29, 30 | oveq12d 5550 |
. . . 4
|
| 32 | facp1 9657 |
. . . . . . . . 9
| |
| 33 | 7, 32 | syl 14 |
. . . . . . . 8
|
| 34 | 33 | eqcomd 2086 |
. . . . . . 7
|
| 35 | facnn2 9661 |
. . . . . . . 8
| |
| 36 | 12, 35 | syl 14 |
. . . . . . 7
|
| 37 | 34, 36 | oveq12d 5550 |
. . . . . 6
|
| 38 | 7 | faccld 9663 |
. . . . . . . 8
|
| 39 | 38 | nncnd 8053 |
. . . . . . 7
|
| 40 | 12 | nnnn0d 8341 |
. . . . . . . . 9
|
| 41 | 40 | faccld 9663 |
. . . . . . . 8
|
| 42 | 41 | nncnd 8053 |
. . . . . . 7
|
| 43 | 39, 42, 18 | mul32d 7261 |
. . . . . 6
|
| 44 | 11 | nncnd 8053 |
. . . . . . 7
|
| 45 | 15 | nncnd 8053 |
. . . . . . 7
|
| 46 | 44, 45, 19 | mulassd 7142 |
. . . . . 6
|
| 47 | 37, 43, 46 | 3eqtr4d 2123 |
. . . . 5
|
| 48 | 47 | oveq2d 5548 |
. . . 4
|
| 49 | 22, 31, 48 | 3eqtr4d 2123 |
. . 3
|
| 50 | 6, 18 | mulcomd 7140 |
. . . 4
|
| 51 | 38, 41 | nnmulcld 8087 |
. . . . . 6
|
| 52 | 51 | nncnd 8053 |
. . . . 5
|
| 53 | 52, 18 | mulcomd 7140 |
. . . 4
|
| 54 | 50, 53 | oveq12d 5550 |
. . 3
|
| 55 | 51 | nnap0d 8084 |
. . . 4
|
| 56 | 9 | nnap0d 8084 |
. . . 4
|
| 57 | 6, 52, 18, 55, 56 | divcanap5d 7903 |
. . 3
|
| 58 | 49, 54, 57 | 3eqtrrd 2118 |
. 2
|
| 59 | 0p1e1 8153 |
. . . . . 6
| |
| 60 | 59 | oveq1i 5542 |
. . . . 5
|
| 61 | 0z 8362 |
. . . . . 6
| |
| 62 | fzp1ss 9090 |
. . . . . 6
| |
| 63 | 61, 62 | ax-mp 7 |
. . . . 5
|
| 64 | 60, 63 | eqsstr3i 3030 |
. . . 4
|
| 65 | 64 | sseli 2995 |
. . 3
|
| 66 | bcval2 9677 |
. . 3
| |
| 67 | 65, 66 | syl 14 |
. 2
|
| 68 | ax-1cn 7069 |
. . . . . . . 8
| |
| 69 | npcan 7317 |
. . . . . . . 8
| |
| 70 | 24, 68, 69 | sylancl 404 |
. . . . . . 7
|
| 71 | peano2zm 8389 |
. . . . . . . 8
| |
| 72 | uzid 8633 |
. . . . . . . 8
| |
| 73 | peano2uz 8671 |
. . . . . . . 8
| |
| 74 | 23, 71, 72, 73 | 4syl 18 |
. . . . . . 7
|
| 75 | 70, 74 | eqeltrrd 2156 |
. . . . . 6
|
| 76 | fzss2 9082 |
. . . . . 6
| |
| 77 | 75, 76 | syl 14 |
. . . . 5
|
| 78 | elfzmlbm 9142 |
. . . . 5
| |
| 79 | 77, 78 | sseldd 3000 |
. . . 4
|
| 80 | bcval2 9677 |
. . . 4
| |
| 81 | 79, 80 | syl 14 |
. . 3
|
| 82 | 81 | oveq1d 5547 |
. 2
|
| 83 | 58, 67, 82 | 3eqtr4d 2123 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-fz 9030 df-iseq 9432 df-fac 9653 df-bc 9675 |
| This theorem is referenced by: bcp1nk 9689 bcpasc 9693 |
| Copyright terms: Public domain | W3C validator |