ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcpasc Unicode version

Theorem bcpasc 9693
Description: Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 8328 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2 elfzp12 9116 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
3 nn0uz 8653 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleq2s 2173 . . . . . 6  |-  ( ( N  +  1 )  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
51, 4syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
6 1p0e1 8154 . . . . . . . 8  |-  ( 1  +  0 )  =  1
7 bcn0 9682 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  0 )  =  1 )
8 0z 8362 . . . . . . . . . . 11  |-  0  e.  ZZ
9 1z 8377 . . . . . . . . . . 11  |-  1  e.  ZZ
10 zsubcl 8392 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  ( 0  -  1 )  e.  ZZ )
118, 9, 10mp2an 416 . . . . . . . . . 10  |-  ( 0  -  1 )  e.  ZZ
12 0re 7119 . . . . . . . . . . . 12  |-  0  e.  RR
13 ltm1 7924 . . . . . . . . . . . 12  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
1412, 13ax-mp 7 . . . . . . . . . . 11  |-  ( 0  -  1 )  <  0
1514orci 682 . . . . . . . . . 10  |-  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) )
16 bcval4 9679 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( 0  -  1 )  e.  ZZ  /\  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) ) )  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
1711, 15, 16mp3an23 1260 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
187, 17oveq12d 5550 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( 1  +  0 ) )
19 bcn0 9682 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
201, 19syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
216, 18, 203eqtr4a 2139 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( ( N  + 
1 )  _C  0
) )
22 oveq2 5540 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  K )  =  ( N  _C  0
) )
23 oveq1 5539 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  -  1 )  =  ( 0  -  1 ) )
2423oveq2d 5548 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  ( K  - 
1 ) )  =  ( N  _C  (
0  -  1 ) ) )
2522, 24oveq12d 5550 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) ) )
26 oveq2 5540 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  0 ) )
2725, 26eqeq12d 2095 . . . . . . 7  |-  ( K  =  0  ->  (
( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K )  <->  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) )  =  ( ( N  +  1 )  _C  0 ) ) )
2821, 27syl5ibrcom 155 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
29 simpr 108 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
30 0p1e1 8153 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3130oveq1i 5542 . . . . . . . . 9  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
3229, 31syl6eleq 2171 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
33 nn0p1nn 8327 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
34 nnuz 8654 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3533, 34syl6eleq 2171 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  1 )
)
36 fzm1 9117 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) ) )
3736biimpa 290 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ( ZZ>= ` 
1 )  /\  K  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )
3835, 37sylan 277 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) )
39 nn0cn 8298 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  CC )
40 ax-1cn 7069 . . . . . . . . . . . . . . 15  |-  1  e.  CC
41 pncan 7314 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4239, 40, 41sylancl 404 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
4342oveq2d 5548 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
4443eleq2d 2148 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( K  e.  ( 1 ... ( ( N  + 
1 )  -  1 ) )  <->  K  e.  ( 1 ... N
) ) )
4544biimpa 290 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  K  e.  ( 1 ... N ) )
46 1eluzge0 8662 . . . . . . . . . . . . . . 15  |-  1  e.  ( ZZ>= `  0 )
47 fzss1 9081 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
4846, 47ax-mp 7 . . . . . . . . . . . . . 14  |-  ( 1 ... N )  C_  ( 0 ... N
)
4948sseli 2995 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
50 bcp1n 9688 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
5149, 50syl 14 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
52 bcrpcl 9680 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
5349, 52syl 14 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  RR+ )
5453rpcnd 8775 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  CC )
55 elfzuz2 9048 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
5655, 34syl6eleqr 2172 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
5756peano2nnd 8054 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  NN )
5857nncnd 8053 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  CC )
5956nncnd 8053 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
60 1cnd 7135 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
61 elfzelz 9045 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
6261zcnd 8470 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
6359, 60, 62addsubd 7440 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  =  ( ( N  -  K )  +  1 ) )
64 fznn0sub 9075 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
65 nn0p1nn 8327 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
6664, 65syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
6763, 66eqeltrd 2155 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
6867nncnd 8053 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
6967nnap0d 8084 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K ) #  0 )
7054, 58, 68, 69div12apd 7913 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( N  +  1 )  x.  ( ( N  _C  K )  /  (
( N  +  1 )  -  K ) ) ) )
7167nnrpd 8772 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR+ )
7253, 71rpdivcld 8791 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  RR+ )
7372rpcnd 8775 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  CC )
7458, 73mulcomd 7140 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  x.  ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7570, 74eqtrd 2113 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7658, 62npcand 7423 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  +  K )  =  ( N  + 
1 ) )
7776oveq2d 5548 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7873, 68, 62adddid 7143 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
7975, 77, 783eqtr2d 2119 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
8054, 68, 69divcanap1d 7878 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  =  ( N  _C  K ) )
81 elfznn 9073 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
8281nnap0d 8084 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  K #  0 )
8354, 68, 62, 69, 82divdivap2d 7909 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( ( ( N  _C  K )  x.  K )  / 
( ( N  + 
1 )  -  K
) ) )
84 bcm1k 9687 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
8559, 62, 60subsub3d 7449 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
8685oveq1d 5547 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  +  1 )  -  K )  /  K ) )
8786oveq2d 5548 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( N  _C  ( K  - 
1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K
) ) )
8884, 87eqtrd 2113 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( ( N  + 
1 )  -  K
)  /  K ) ) )
89 fzelp1 9091 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
9057nnzd 8468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  ZZ )
91 elfzm1b 9115 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ) )
9261, 90, 91syl2anc 403 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... ( N  + 
1 ) )  <->  ( K  -  1 )  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ) )
9389, 92mpbid 145 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) ) )
9459, 40, 41sylancl 404 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  1 )  =  N )
9594oveq2d 5548 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
9693, 95eleqtrd 2157 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
97 bcrpcl 9680 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9896, 97syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9998rpcnd 8775 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  CC )
10081nnrpd 8772 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  RR+ )
10171, 100rpdivcld 8791 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  RR+ )
102101rpcnd 8775 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  CC )
10368, 62, 69, 82divap0d 7893 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K ) #  0 )
10454, 99, 102, 103divmulap3d 7911 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( ( N  + 
1 )  -  K
)  /  K ) )  =  ( N  _C  ( K  - 
1 ) )  <->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K ) ) ) )
10588, 104mpbird 165 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( N  _C  ( K  -  1
) ) )
10654, 62, 68, 69div23apd 7914 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  x.  K
)  /  ( ( N  +  1 )  -  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  K ) )
10783, 105, 1063eqtr3rd 2122 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  K )  =  ( N  _C  ( K  -  1
) ) )
10880, 107oveq12d 5550 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  K ) )  =  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) ) )
10951, 79, 1083eqtrrd 2118 . . . . . . . . . . 11  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
11045, 109syl 14 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
111 oveq2 5540 . . . . . . . . . . . . 13  |-  ( K  =  ( N  + 
1 )  ->  ( N  _C  K )  =  ( N  _C  ( N  +  1 ) ) )
11233nnzd 8468 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
113 nn0re 8297 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  N  e.  RR )
114113ltp1d 8008 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  < 
( N  +  1 ) )
115114olcd 685 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  <  0  \/  N  <  ( N  +  1 ) ) )
116 bcval4 9679 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  ( N  +  1
)  e.  ZZ  /\  ( ( N  + 
1 )  <  0  \/  N  <  ( N  +  1 ) ) )  ->  ( N  _C  ( N  +  1 ) )  =  0 )
117112, 115, 116mpd3an23 1270 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  _C  ( N  + 
1 ) )  =  0 )
118111, 117sylan9eqr 2135 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  K )  =  0 )
119 oveq1 5539 . . . . . . . . . . . . . . 15  |-  ( K  =  ( N  + 
1 )  ->  ( K  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
120119, 42sylan9eqr 2135 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( K  - 
1 )  =  N )
121120oveq2d 5548 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  ( N  _C  N ) )
122 bcnn 9684 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
123122adantr 270 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  N )  =  1 )
124121, 123eqtrd 2113 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  1 )
125118, 124oveq12d 5550 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( 0  +  1 ) )
126 oveq2 5540 . . . . . . . . . . . 12  |-  ( K  =  ( N  + 
1 )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  ( N  +  1 ) ) )
127 bcnn 9684 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
1281, 127syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
129126, 128sylan9eqr 2135 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  +  1 )  _C  K )  =  1 )
13030, 125, 1293eqtr4a 2139 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
131110, 130jaodan 743 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( K  e.  (
1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13238, 131syldan 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13332, 132syldan 276 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
134133ex 113 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
13528, 134jaod 669 . . . . 5  |-  ( N  e.  NN0  ->  ( ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
1365, 135sylbid 148 . . . 4  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
137136imp 122 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
138137adantlr 460 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
139 00id 7249 . . 3  |-  ( 0  +  0 )  =  0
140 fzelp1 9091 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
141140con3i 594 . . . . 5  |-  ( -.  K  e.  ( 0 ... ( N  + 
1 ) )  ->  -.  K  e.  (
0 ... N ) )
142 bcval3 9678 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1431423expa 1138 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
144141, 143sylan2 280 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  K )  =  0 )
145 simpll 495 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  N  e.  NN0 )
146 simplr 496 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  K  e.  ZZ )
147 peano2zm 8389 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
148146, 147syl 14 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( K  -  1 )  e.  ZZ )
14939adantr 270 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  CC )
150149, 40, 41sylancl 404 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  + 
1 )  -  1 )  =  N )
151150oveq2d 5548 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
152151eleq2d 2148 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... N ) ) )
153 id 19 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  ZZ )
1541nn0zd 8467 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
155153, 154, 91syl2anr 284 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ) )
156 fzp1ss 9090 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
1578, 156ax-mp 7 . . . . . . . . . 10  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
15831, 157eqsstr3i 3030 . . . . . . . . 9  |-  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
159158sseli 2995 . . . . . . . 8  |-  ( K  e.  ( 1 ... ( N  +  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
160155, 159syl6bir 162 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
161152, 160sylbird 168 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
162161con3dimp 596 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  ( K  -  1
)  e.  ( 0 ... N ) )
163 bcval3 9678 . . . . 5  |-  ( ( N  e.  NN0  /\  ( K  -  1
)  e.  ZZ  /\  -.  ( K  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( K  -  1
) )  =  0 )
164145, 148, 162, 163syl3anc 1169 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( K  - 
1 ) )  =  0 )
165144, 164oveq12d 5550 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( 0  +  0 ) )
166145, 1syl 14 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  NN0 )
167 simpr 108 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )
168 bcval3 9678 . . . 4  |-  ( ( ( N  +  1 )  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  +  1 )  _C  K )  =  0 )
169166, 146, 167, 168syl3anc 1169 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  +  1 )  _C  K )  =  0 )
170139, 165, 1693eqtr4a 2139 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
171 simpr 108 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  K  e.  ZZ )
172 0zd 8363 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  0  e.  ZZ )
173112adantr 270 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  +  1 )  e.  ZZ )
174 fzdcel 9059 . . . 4  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> DECID  K  e.  ( 0 ... ( N  +  1 ) ) )
175 exmiddc 777 . . . 4  |-  (DECID  K  e.  ( 0 ... ( N  +  1 ) )  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
176174, 175syl 14 . . 3  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
177171, 172, 173, 176syl3anc 1169 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
178138, 170, 177mpjaodan 744 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284    e. wcel 1433    C_ wss 2973   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    - cmin 7279    / cdiv 7760   NNcn 8039   NN0cn0 8288   ZZcz 8351   ZZ>=cuz 8619   RR+crp 8734   ...cfz 9029    _C cbc 9674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-iseq 9432  df-fac 9653  df-bc 9675
This theorem is referenced by:  bccl  9694  bcn2m1  9696  bcn2p1  9697  ex-bc  10566
  Copyright terms: Public domain W3C validator