Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findes Unicode version

Theorem bj-findes 10776
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 10774 for explanations. From this version, it is easy to prove findes 4344. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-findes  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )

Proof of Theorem bj-findes
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1461 . . . 4  |-  F/ y
ph
2 nfv 1461 . . . 4  |-  F/ y
[. suc  x  /  x ]. ph
31, 2nfim 1504 . . 3  |-  F/ y ( ph  ->  [. suc  x  /  x ]. ph )
4 nfs1v 1856 . . . 4  |-  F/ x [ y  /  x ] ph
5 nfsbc1v 2833 . . . 4  |-  F/ x [. suc  y  /  x ]. ph
64, 5nfim 1504 . . 3  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
7 sbequ12 1694 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
8 suceq 4157 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
98sbceq1d 2820 . . . 4  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
107, 9imbi12d 232 . . 3  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
113, 6, 10cbvral 2573 . 2  |-  ( A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )  <->  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) )
12 nfsbc1v 2833 . . 3  |-  F/ x [. (/)  /  x ]. ph
13 sbceq1a 2824 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
1413biimprd 156 . . 3  |-  ( x  =  (/)  ->  ( [. (/)  /  x ]. ph  ->  ph ) )
15 sbequ1 1691 . . 3  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
16 sbceq1a 2824 . . . 4  |-  ( x  =  suc  y  -> 
( ph  <->  [. suc  y  /  x ]. ph ) )
1716biimprd 156 . . 3  |-  ( x  =  suc  y  -> 
( [. suc  y  /  x ]. ph  ->  ph )
)
1812, 4, 5, 14, 15, 17bj-findis 10774 . 2  |-  ( (
[. (/)  /  x ]. ph 
/\  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)  ->  A. x  e.  om  ph )
1911, 18sylan2b 281 1  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   [wsb 1685   A.wral 2348   [.wsbc 2815   (/)c0 3251   suc csuc 4120   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-bd0 10604  ax-bdim 10605  ax-bdan 10606  ax-bdor 10607  ax-bdn 10608  ax-bdal 10609  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675  ax-infvn 10736
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator