Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano4 Unicode version

Theorem bj-peano4 10750
Description: Remove from peano4 4338 dependency on ax-setind 4280. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem bj-peano4
StepHypRef Expression
1 3simpa 935 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( A  e. 
om  /\  B  e.  om ) )
2 pm3.22 261 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  om  /\  A  e.  om )
)
3 bj-nnen2lp 10749 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  -.  ( B  e.  A  /\  A  e.  B ) )
41, 2, 33syl 17 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  -.  ( B  e.  A  /\  A  e.  B ) )
5 sucidg 4171 . . . . . . . . . . . 12  |-  ( B  e.  om  ->  B  e.  suc  B )
6 eleq2 2142 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( B  e.  suc  A  <-> 
B  e.  suc  B
) )
75, 6syl5ibrcom 155 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
8 elsucg 4159 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( B  e.  suc  A  <->  ( B  e.  A  \/  B  =  A ) ) )
97, 8sylibd 147 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( suc  A  =  suc  B  ->  ( B  e.  A  \/  B  =  A
) ) )
109imp 122 . . . . . . . . 9  |-  ( ( B  e.  om  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
11103adant1 956 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( B  e.  A  \/  B  =  A ) )
12 sucidg 4171 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  A  e.  suc  A )
13 eleq2 2142 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( A  e.  suc  A  <-> 
A  e.  suc  B
) )
1412, 13syl5ibcom 153 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
15 elsucg 4159 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
1614, 15sylibd 147 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( suc  A  =  suc  B  ->  ( A  e.  B  \/  A  =  B
) ) )
1716imp 122 . . . . . . . . 9  |-  ( ( A  e.  om  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
18173adant2 957 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( A  e.  B  \/  A  =  B ) )
1911, 18jca 300 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  \/  B  =  A )  /\  ( A  e.  B  \/  A  =  B )
) )
20 eqcom 2083 . . . . . . . . 9  |-  ( B  =  A  <->  A  =  B )
2120orbi2i 711 . . . . . . . 8  |-  ( ( B  e.  A  \/  B  =  A )  <->  ( B  e.  A  \/  A  =  B )
)
2221anbi1i 445 . . . . . . 7  |-  ( ( ( B  e.  A  \/  B  =  A
)  /\  ( A  e.  B  \/  A  =  B ) )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2319, 22sylib 120 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B )
) )
24 ordir 763 . . . . . 6  |-  ( ( ( B  e.  A  /\  A  e.  B
)  \/  A  =  B )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2523, 24sylibr 132 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  /\  A  e.  B )  \/  A  =  B ) )
2625ord 675 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( -.  ( B  e.  A  /\  A  e.  B )  ->  A  =  B ) )
274, 26mpd 13 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  A  =  B )
28273expia 1140 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
29 suceq 4157 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
3028, 29impbid1 140 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   suc csuc 4120   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdn 10608  ax-bdal 10609  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675  ax-infvn 10736
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator