| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-peano4 | Unicode version | ||
| Description: Remove from peano4 4338 dependency on ax-setind 4280. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-peano4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 935 |
. . . . 5
| |
| 2 | pm3.22 261 |
. . . . 5
| |
| 3 | bj-nnen2lp 10749 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3syl 17 |
. . . 4
|
| 5 | sucidg 4171 |
. . . . . . . . . . . 12
| |
| 6 | eleq2 2142 |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | syl5ibrcom 155 |
. . . . . . . . . . 11
|
| 8 | elsucg 4159 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | sylibd 147 |
. . . . . . . . . 10
|
| 10 | 9 | imp 122 |
. . . . . . . . 9
|
| 11 | 10 | 3adant1 956 |
. . . . . . . 8
|
| 12 | sucidg 4171 |
. . . . . . . . . . . 12
| |
| 13 | eleq2 2142 |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | syl5ibcom 153 |
. . . . . . . . . . 11
|
| 15 | elsucg 4159 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylibd 147 |
. . . . . . . . . 10
|
| 17 | 16 | imp 122 |
. . . . . . . . 9
|
| 18 | 17 | 3adant2 957 |
. . . . . . . 8
|
| 19 | 11, 18 | jca 300 |
. . . . . . 7
|
| 20 | eqcom 2083 |
. . . . . . . . 9
| |
| 21 | 20 | orbi2i 711 |
. . . . . . . 8
|
| 22 | 21 | anbi1i 445 |
. . . . . . 7
|
| 23 | 19, 22 | sylib 120 |
. . . . . 6
|
| 24 | ordir 763 |
. . . . . 6
| |
| 25 | 23, 24 | sylibr 132 |
. . . . 5
|
| 26 | 25 | ord 675 |
. . . 4
|
| 27 | 4, 26 | mpd 13 |
. . 3
|
| 28 | 27 | 3expia 1140 |
. 2
|
| 29 | suceq 4157 |
. 2
| |
| 30 | 28, 29 | impbid1 140 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 ax-pr 3964 ax-un 4188 ax-bd0 10604 ax-bdor 10607 ax-bdn 10608 ax-bdal 10609 ax-bdex 10610 ax-bdeq 10611 ax-bdel 10612 ax-bdsb 10613 ax-bdsep 10675 ax-infvn 10736 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-suc 4126 df-iom 4332 df-bdc 10632 df-bj-ind 10722 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |