| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemval | Unicode version | ||
| Description: Lemma for caucvgprpr 6902. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| Ref | Expression |
|---|---|
| caucvgprprlemval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpi 6514 |
. . . . 5
| |
| 2 | 1 | brel 4410 |
. . . 4
|
| 3 | 2 | adantl 271 |
. . 3
|
| 4 | caucvgprpr.f |
. . . . 5
| |
| 5 | caucvgprpr.cau |
. . . . 5
| |
| 6 | 4, 5 | caucvgprprlemcbv 6877 |
. . . 4
|
| 7 | 6 | adantr 270 |
. . 3
|
| 8 | simpr 108 |
. . 3
| |
| 9 | breq1 3788 |
. . . . 5
| |
| 10 | fveq2 5198 |
. . . . . . 7
| |
| 11 | opeq1 3570 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | eceq1d 6165 |
. . . . . . . . . . . 12
|
| 13 | 12 | fveq2d 5202 |
. . . . . . . . . . 11
|
| 14 | 13 | breq2d 3797 |
. . . . . . . . . 10
|
| 15 | 14 | abbidv 2196 |
. . . . . . . . 9
|
| 16 | 13 | breq1d 3795 |
. . . . . . . . . 10
|
| 17 | 16 | abbidv 2196 |
. . . . . . . . 9
|
| 18 | 15, 17 | opeq12d 3578 |
. . . . . . . 8
|
| 19 | 18 | oveq2d 5548 |
. . . . . . 7
|
| 20 | 10, 19 | breq12d 3798 |
. . . . . 6
|
| 21 | 10, 18 | oveq12d 5550 |
. . . . . . 7
|
| 22 | 21 | breq2d 3797 |
. . . . . 6
|
| 23 | 20, 22 | anbi12d 456 |
. . . . 5
|
| 24 | 9, 23 | imbi12d 232 |
. . . 4
|
| 25 | breq2 3789 |
. . . . 5
| |
| 26 | fveq2 5198 |
. . . . . . . 8
| |
| 27 | 26 | oveq1d 5547 |
. . . . . . 7
|
| 28 | 27 | breq2d 3797 |
. . . . . 6
|
| 29 | 26 | breq1d 3795 |
. . . . . 6
|
| 30 | 28, 29 | anbi12d 456 |
. . . . 5
|
| 31 | 25, 30 | imbi12d 232 |
. . . 4
|
| 32 | 24, 31 | rspc2v 2713 |
. . 3
|
| 33 | 3, 7, 8, 32 | syl3c 62 |
. 2
|
| 34 | breq1 3788 |
. . . . . . 7
| |
| 35 | 34 | cbvabv 2202 |
. . . . . 6
|
| 36 | breq2 3789 |
. . . . . . 7
| |
| 37 | 36 | cbvabv 2202 |
. . . . . 6
|
| 38 | 35, 37 | opeq12i 3575 |
. . . . 5
|
| 39 | 38 | oveq2i 5543 |
. . . 4
|
| 40 | 39 | breq2i 3793 |
. . 3
|
| 41 | 38 | oveq2i 5543 |
. . . 4
|
| 42 | 41 | breq2i 3793 |
. . 3
|
| 43 | 40, 42 | anbi12i 447 |
. 2
|
| 44 | 33, 43 | sylib 120 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fv 4930 df-ov 5535 df-ec 6131 df-lti 6497 |
| This theorem is referenced by: caucvgprprlemnkltj 6879 caucvgprprlemnjltk 6881 caucvgprprlemnbj 6883 |
| Copyright terms: Public domain | W3C validator |