| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemnkltj | Unicode version | ||
| Description: Lemma for caucvgprpr 6902. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprprlemnkj.k |
|
| caucvgprprlemnkj.j |
|
| caucvgprprlemnkj.s |
|
| Ref | Expression |
|---|---|
| caucvgprprlemnkltj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsopr 6786 |
. . . 4
| |
| 2 | ltrelpr 6695 |
. . . 4
| |
| 3 | 1, 2 | son2lpi 4741 |
. . 3
|
| 4 | simprl 497 |
. . . . . . 7
| |
| 5 | caucvgprpr.f |
. . . . . . . . . 10
| |
| 6 | caucvgprpr.cau |
. . . . . . . . . 10
| |
| 7 | 5, 6 | caucvgprprlemval 6878 |
. . . . . . . . 9
|
| 8 | 7 | simpld 110 |
. . . . . . . 8
|
| 9 | 8 | adantr 270 |
. . . . . . 7
|
| 10 | 1, 2 | sotri 4740 |
. . . . . . 7
|
| 11 | 4, 9, 10 | syl2anc 403 |
. . . . . 6
|
| 12 | ltaprg 6809 |
. . . . . . . 8
| |
| 13 | 12 | adantl 271 |
. . . . . . 7
|
| 14 | caucvgprprlemnkj.s |
. . . . . . . . 9
| |
| 15 | 14 | ad2antrr 471 |
. . . . . . . 8
|
| 16 | nqprlu 6737 |
. . . . . . . 8
| |
| 17 | 15, 16 | syl 14 |
. . . . . . 7
|
| 18 | caucvgprprlemnkj.j |
. . . . . . . . 9
| |
| 19 | 5, 18 | ffvelrnd 5324 |
. . . . . . . 8
|
| 20 | 19 | ad2antrr 471 |
. . . . . . 7
|
| 21 | caucvgprprlemnkj.k |
. . . . . . . . 9
| |
| 22 | recnnpr 6738 |
. . . . . . . . 9
| |
| 23 | 21, 22 | syl 14 |
. . . . . . . 8
|
| 24 | 23 | ad2antrr 471 |
. . . . . . 7
|
| 25 | addcomprg 6768 |
. . . . . . . 8
| |
| 26 | 25 | adantl 271 |
. . . . . . 7
|
| 27 | 13, 17, 20, 24, 26 | caovord2d 5690 |
. . . . . 6
|
| 28 | 11, 27 | mpbird 165 |
. . . . 5
|
| 29 | recnnpr 6738 |
. . . . . . . . 9
| |
| 30 | 18, 29 | syl 14 |
. . . . . . . 8
|
| 31 | 30 | ad2antrr 471 |
. . . . . . 7
|
| 32 | ltaddpr 6787 |
. . . . . . 7
| |
| 33 | 20, 31, 32 | syl2anc 403 |
. . . . . 6
|
| 34 | simprr 498 |
. . . . . 6
| |
| 35 | 1, 2 | sotri 4740 |
. . . . . 6
|
| 36 | 33, 34, 35 | syl2anc 403 |
. . . . 5
|
| 37 | 28, 36 | jca 300 |
. . . 4
|
| 38 | 37 | ex 113 |
. . 3
|
| 39 | 3, 38 | mtoi 622 |
. 2
|
| 40 | 14 | adantr 270 |
. . . . 5
|
| 41 | nnnq 6612 |
. . . . . . 7
| |
| 42 | recclnq 6582 |
. . . . . . 7
| |
| 43 | 21, 41, 42 | 3syl 17 |
. . . . . 6
|
| 44 | 43 | adantr 270 |
. . . . 5
|
| 45 | addnqpr 6751 |
. . . . 5
| |
| 46 | 40, 44, 45 | syl2anc 403 |
. . . 4
|
| 47 | 46 | breq1d 3795 |
. . 3
|
| 48 | 47 | anbi1d 452 |
. 2
|
| 49 | 39, 48 | mtbird 630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-iplp 6658 df-iltp 6660 |
| This theorem is referenced by: caucvgprprlemnkj 6882 |
| Copyright terms: Public domain | W3C validator |