| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp4 | Unicode version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 4829. (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| elxp4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 |
. 2
| |
| 2 | elex 2610 |
. . . 4
| |
| 3 | elex 2610 |
. . . 4
| |
| 4 | 2, 3 | anim12i 331 |
. . 3
|
| 5 | opexg 3983 |
. . . . 5
| |
| 6 | 5 | adantl 271 |
. . . 4
|
| 7 | eleq1 2141 |
. . . . 5
| |
| 8 | 7 | adantr 270 |
. . . 4
|
| 9 | 6, 8 | mpbird 165 |
. . 3
|
| 10 | 4, 9 | sylan2 280 |
. 2
|
| 11 | elxp 4380 |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | sneq 3409 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | rneqd 4581 |
. . . . . . . . . . . 12
|
| 15 | 14 | unieqd 3612 |
. . . . . . . . . . 11
|
| 16 | vex 2604 |
. . . . . . . . . . . 12
| |
| 17 | vex 2604 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | op2nda 4825 |
. . . . . . . . . . 11
|
| 19 | 15, 18 | syl6req 2130 |
. . . . . . . . . 10
|
| 20 | 19 | pm4.71ri 384 |
. . . . . . . . 9
|
| 21 | 20 | anbi1i 445 |
. . . . . . . 8
|
| 22 | anass 393 |
. . . . . . . 8
| |
| 23 | 21, 22 | bitri 182 |
. . . . . . 7
|
| 24 | 23 | exbii 1536 |
. . . . . 6
|
| 25 | snexg 3956 |
. . . . . . . . 9
| |
| 26 | rnexg 4615 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | uniexg 4193 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | opeq2 3571 |
. . . . . . . . . 10
| |
| 31 | 30 | eqeq2d 2092 |
. . . . . . . . 9
|
| 32 | eleq1 2141 |
. . . . . . . . . 10
| |
| 33 | 32 | anbi2d 451 |
. . . . . . . . 9
|
| 34 | 31, 33 | anbi12d 456 |
. . . . . . . 8
|
| 35 | 34 | ceqsexgv 2724 |
. . . . . . 7
|
| 36 | 29, 35 | syl 14 |
. . . . . 6
|
| 37 | 24, 36 | syl5bb 190 |
. . . . 5
|
| 38 | sneq 3409 |
. . . . . . . . . . . 12
| |
| 39 | 38 | dmeqd 4555 |
. . . . . . . . . . 11
|
| 40 | 39 | unieqd 3612 |
. . . . . . . . . 10
|
| 41 | 40 | adantl 271 |
. . . . . . . . 9
|
| 42 | dmsnopg 4812 |
. . . . . . . . . . . . 13
| |
| 43 | 29, 42 | syl 14 |
. . . . . . . . . . . 12
|
| 44 | 43 | unieqd 3612 |
. . . . . . . . . . 11
|
| 45 | 16 | unisn 3617 |
. . . . . . . . . . 11
|
| 46 | 44, 45 | syl6eq 2129 |
. . . . . . . . . 10
|
| 47 | 46 | adantr 270 |
. . . . . . . . 9
|
| 48 | 41, 47 | eqtr2d 2114 |
. . . . . . . 8
|
| 49 | 48 | ex 113 |
. . . . . . 7
|
| 50 | 49 | pm4.71rd 386 |
. . . . . 6
|
| 51 | 50 | anbi1d 452 |
. . . . 5
|
| 52 | anass 393 |
. . . . . 6
| |
| 53 | 52 | a1i 9 |
. . . . 5
|
| 54 | 37, 51, 53 | 3bitrd 212 |
. . . 4
|
| 55 | 54 | exbidv 1746 |
. . 3
|
| 56 | dmexg 4614 |
. . . . . 6
| |
| 57 | 25, 56 | syl 14 |
. . . . 5
|
| 58 | uniexg 4193 |
. . . . 5
| |
| 59 | 57, 58 | syl 14 |
. . . 4
|
| 60 | opeq1 3570 |
. . . . . . 7
| |
| 61 | 60 | eqeq2d 2092 |
. . . . . 6
|
| 62 | eleq1 2141 |
. . . . . . 7
| |
| 63 | 62 | anbi1d 452 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 456 |
. . . . 5
|
| 65 | 64 | ceqsexgv 2724 |
. . . 4
|
| 66 | 59, 65 | syl 14 |
. . 3
|
| 67 | 12, 55, 66 | 3bitrd 212 |
. 2
|
| 68 | 1, 10, 67 | pm5.21nii 652 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 |
| This theorem is referenced by: elxp6 5816 xpdom2 6328 |
| Copyright terms: Public domain | W3C validator |