ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos2 Unicode version

Theorem brtpos2 5889
Description: Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )

Proof of Theorem brtpos2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 5888 . . . 4  |-  Rel tpos  F
21brrelexi 4402 . . 3  |-  ( Atpos 
F B  ->  A  e.  _V )
32a1i 9 . 2  |-  ( B  e.  V  ->  ( Atpos  F B  ->  A  e.  _V ) )
4 elex 2610 . . . 4  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  A  e.  _V )
54adantr 270 . . 3  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V )
65a1i 9 . 2  |-  ( B  e.  V  ->  (
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V ) )
7 df-tpos 5883 . . . . . 6  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
87breqi 3791 . . . . 5  |-  ( Atpos 
F B  <->  A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B )
9 brcog 4520 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B  <->  E. y
( A ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) y  /\  y F B ) ) )
108, 9syl5bb 190 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <->  E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B ) ) )
11 funmpt 4958 . . . . . . . . . . 11  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
12 funbrfv2b 5239 . . . . . . . . . . 11  |-  ( Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  ->  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) ) )
1311, 12ax-mp 7 . . . . . . . . . 10  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) )
14 vex 2604 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
15 snexg 3956 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  { x }  e.  _V )
1614, 15ax-mp 7 . . . . . . . . . . . . . . . 16  |-  { x }  e.  _V
1716cnvex 4876 . . . . . . . . . . . . . . 15  |-  `' {
x }  e.  _V
1817uniex 4192 . . . . . . . . . . . . . 14  |-  U. `' { x }  e.  _V
19 eqid 2081 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  =  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
2018, 19dmmpti 5048 . . . . . . . . . . . . 13  |-  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  =  ( `' dom  F  u.  { (/) } )
2120eleq2i 2145 . . . . . . . . . . . 12  |-  ( A  e.  dom  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
22 eqcom 2083 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  =  y  <->  y  =  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A ) )
2321, 22anbi12i 447 . . . . . . . . . . 11  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) ) )
24 snexg 3956 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  { A }  e.  _V )
25 cnvexg 4875 . . . . . . . . . . . . . . . 16  |-  ( { A }  e.  _V  ->  `' { A }  e.  _V )
2624, 25syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  `' { A }  e.  _V )
27 uniexg 4193 . . . . . . . . . . . . . . 15  |-  ( `' { A }  e.  _V  ->  U. `' { A }  e.  _V )
2826, 27syl 14 . . . . . . . . . . . . . 14  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  U. `' { A }  e.  _V )
29 sneq 3409 . . . . . . . . . . . . . . . . 17  |-  ( x  =  A  ->  { x }  =  { A } )
3029cnveqd 4529 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  `' { x }  =  `' { A } )
3130unieqd 3612 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  U. `' { x }  =  U. `' { A } )
3231, 19fvmptg 5269 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A }  e.  _V )  ->  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  = 
U. `' { A } )
3328, 32mpdan 412 . . . . . . . . . . . . 13  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  U. `' { A } )
3433eqeq2d 2092 . . . . . . . . . . . 12  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) `
 A )  <->  y  =  U. `' { A } ) )
3534pm5.32i 441 . . . . . . . . . . 11  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
3623, 35bitri 182 . . . . . . . . . 10  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } ) )
3713, 36bitri 182 . . . . . . . . 9  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
38 ancom 262 . . . . . . . . 9  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } )  <->  ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
3937, 38bitri 182 . . . . . . . 8  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( y  = 
U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
4039anbi1i 445 . . . . . . 7  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( (
y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B ) )
41 anass 393 . . . . . . 7  |-  ( ( ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
4240, 41bitri 182 . . . . . 6  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
4342exbii 1536 . . . . 5  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) ) )
44 exsimpr 1549 . . . . . . 7  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  ->  E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )
45 exsimpl 1548 . . . . . . . 8  |-  ( E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B )  ->  E. y  A  e.  ( `' dom  F  u.  { (/)
} ) )
46 19.9v 1792 . . . . . . . 8  |-  ( E. y  A  e.  ( `' dom  F  u.  { (/)
} )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
4745, 46sylib 120 . . . . . . 7  |-  ( E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B )  ->  A  e.  ( `' dom  F  u.  { (/) } ) )
4844, 47syl 14 . . . . . 6  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  ->  A  e.  ( `' dom  F  u.  { (/)
} ) )
49 simpl 107 . . . . . 6  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  ( `' dom  F  u.  { (/) } ) )
50 breq1 3788 . . . . . . . . 9  |-  ( y  =  U. `' { A }  ->  ( y F B  <->  U. `' { A } F B ) )
5150anbi2d 451 . . . . . . . 8  |-  ( y  =  U. `' { A }  ->  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5251ceqsexgv 2724 . . . . . . 7  |-  ( U. `' { A }  e.  _V  ->  ( E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5328, 52syl 14 . . . . . 6  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5448, 49, 53pm5.21nii 652 . . . . 5  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) )
5543, 54bitri 182 . . . 4  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) )
5610, 55syl6bb 194 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) ) )
5756expcom 114 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) ) )
583, 6, 57pm5.21ndd 653 1  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601    u. cun 2971   (/)c0 3251   {csn 3398   U.cuni 3601   class class class wbr 3785    |-> cmpt 3839   `'ccnv 4362   dom cdm 4363    o. ccom 4367   Fun wfun 4916   ` cfv 4922  tpos ctpos 5882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-tpos 5883
This theorem is referenced by:  brtpos0  5890  reldmtpos  5891  brtposg  5892  dftpos4  5901  tpostpos  5902
  Copyright terms: Public domain W3C validator