ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcau Unicode version

Theorem climcau 10184
Description: A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 10187). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcau  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcau
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4549 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. y <. F ,  y >.  e. 
~~>  ) )
21ibi 174 . . 3  |-  ( F  e.  dom  ~~>  ->  E. y <. F ,  y >.  e. 
~~>  )
3 df-br 3786 . . . . 5  |-  ( F  ~~>  y  <->  <. F ,  y
>.  e.  ~~>  )
4 climcau.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
5 simpll 495 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  M  e.  ZZ )
6 rphalfcl 8761 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
76adantl 271 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( x  /  2
)  e.  RR+ )
8 eqidd 2082 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  k  e.  Z
)  ->  ( F `  k )  =  ( F `  k ) )
9 simplr 496 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  F 
~~>  y )
104, 5, 7, 8, 9climi 10126 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) ) )
11 eluzelz 8628 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
12 uzid 8633 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1311, 12syl 14 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ( ZZ>= `  j )
)
1413, 4eleq2s 2173 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
1514adantl 271 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  j  e.  ( ZZ>= `  j )
)
16 fveq2 5198 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1716eleq1d 2147 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1816oveq1d 5547 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( F `  k
)  -  y )  =  ( ( F `
 j )  -  y ) )
1918fveq2d 5202 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( abs `  ( ( F `
 k )  -  y ) )  =  ( abs `  (
( F `  j
)  -  y ) ) )
2019breq1d 3795 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 )  <->  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )
2117, 20anbi12d 456 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  <-> 
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) ) ) )
2221rspcv 2697 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
2315, 22syl 14 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
24 rpre 8740 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
2524ad2antlr 472 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  x  e.  RR )
26 simpllr 500 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  F  ~~>  y )
27 climcl 10121 . . . . . . . . . . . 12  |-  ( F  ~~>  y  ->  y  e.  CC )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  y  e.  CC )
29 simprl 497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  k )  e.  CC )
30 simplrl 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  j )  e.  CC )
31 simpllr 500 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  y  e.  CC )
32 simplll 499 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  x  e.  RR )
33 simprr 498 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )
3431, 30abssubd 10079 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  y ) ) )
35 simplrr 502 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )
3634, 35eqbrtrd 3805 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  <  (
x  /  2 ) )
3729, 30, 31, 32, 33, 36abs3lemd 10087 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)
3837ex 113 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938ralimdv 2430 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039ex 113 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) )  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4140com23 77 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  j )  e.  CC  /\  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4225, 28, 41syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
4323, 42mpdd 40 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4443reximdva 2463 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4510, 44mpd 13 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
4645ralrimiva 2434 . . . . . 6  |-  ( ( M  e.  ZZ  /\  F 
~~>  y )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ex 113 . . . . 5  |-  ( M  e.  ZZ  ->  ( F 
~~>  y  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
483, 47syl5bir 151 . . . 4  |-  ( M  e.  ZZ  ->  ( <. F ,  y >.  e. 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
4948exlimdv 1740 . . 3  |-  ( M  e.  ZZ  ->  ( E. y <. F ,  y
>.  e.  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
502, 49syl5 32 . 2  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
5150imp 122 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   A.wral 2348   E.wrex 2349   <.cop 3401   class class class wbr 3785   dom cdm 4363   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980    < clt 7153    - cmin 7279    / cdiv 7760   2c2 8089   ZZcz 8351   ZZ>=cuz 8619   RR+crp 8734   abscabs 9883    ~~> cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-clim 10118
This theorem is referenced by:  climcaucn  10188
  Copyright terms: Public domain W3C validator