| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcau | Unicode version | ||
| Description: A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 10187). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| climcau.1 |
|
| Ref | Expression |
|---|---|
| climcau |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm2g 4549 |
. . . 4
| |
| 2 | 1 | ibi 174 |
. . 3
|
| 3 | df-br 3786 |
. . . . 5
| |
| 4 | climcau.1 |
. . . . . . . . 9
| |
| 5 | simpll 495 |
. . . . . . . . 9
| |
| 6 | rphalfcl 8761 |
. . . . . . . . . 10
| |
| 7 | 6 | adantl 271 |
. . . . . . . . 9
|
| 8 | eqidd 2082 |
. . . . . . . . 9
| |
| 9 | simplr 496 |
. . . . . . . . 9
| |
| 10 | 4, 5, 7, 8, 9 | climi 10126 |
. . . . . . . 8
|
| 11 | eluzelz 8628 |
. . . . . . . . . . . . . 14
| |
| 12 | uzid 8633 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . . . . 13
|
| 14 | 13, 4 | eleq2s 2173 |
. . . . . . . . . . . 12
|
| 15 | 14 | adantl 271 |
. . . . . . . . . . 11
|
| 16 | fveq2 5198 |
. . . . . . . . . . . . . 14
| |
| 17 | 16 | eleq1d 2147 |
. . . . . . . . . . . . 13
|
| 18 | 16 | oveq1d 5547 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | fveq2d 5202 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | breq1d 3795 |
. . . . . . . . . . . . 13
|
| 21 | 17, 20 | anbi12d 456 |
. . . . . . . . . . . 12
|
| 22 | 21 | rspcv 2697 |
. . . . . . . . . . 11
|
| 23 | 15, 22 | syl 14 |
. . . . . . . . . 10
|
| 24 | rpre 8740 |
. . . . . . . . . . . 12
| |
| 25 | 24 | ad2antlr 472 |
. . . . . . . . . . 11
|
| 26 | simpllr 500 |
. . . . . . . . . . . 12
| |
| 27 | climcl 10121 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | syl 14 |
. . . . . . . . . . 11
|
| 29 | simprl 497 |
. . . . . . . . . . . . . . . 16
| |
| 30 | simplrl 501 |
. . . . . . . . . . . . . . . 16
| |
| 31 | simpllr 500 |
. . . . . . . . . . . . . . . 16
| |
| 32 | simplll 499 |
. . . . . . . . . . . . . . . 16
| |
| 33 | simprr 498 |
. . . . . . . . . . . . . . . 16
| |
| 34 | 31, 30 | abssubd 10079 |
. . . . . . . . . . . . . . . . 17
|
| 35 | simplrr 502 |
. . . . . . . . . . . . . . . . 17
| |
| 36 | 34, 35 | eqbrtrd 3805 |
. . . . . . . . . . . . . . . 16
|
| 37 | 29, 30, 31, 32, 33, 36 | abs3lemd 10087 |
. . . . . . . . . . . . . . 15
|
| 38 | 37 | ex 113 |
. . . . . . . . . . . . . 14
|
| 39 | 38 | ralimdv 2430 |
. . . . . . . . . . . . 13
|
| 40 | 39 | ex 113 |
. . . . . . . . . . . 12
|
| 41 | 40 | com23 77 |
. . . . . . . . . . 11
|
| 42 | 25, 28, 41 | syl2anc 403 |
. . . . . . . . . 10
|
| 43 | 23, 42 | mpdd 40 |
. . . . . . . . 9
|
| 44 | 43 | reximdva 2463 |
. . . . . . . 8
|
| 45 | 10, 44 | mpd 13 |
. . . . . . 7
|
| 46 | 45 | ralrimiva 2434 |
. . . . . 6
|
| 47 | 46 | ex 113 |
. . . . 5
|
| 48 | 3, 47 | syl5bir 151 |
. . . 4
|
| 49 | 48 | exlimdv 1740 |
. . 3
|
| 50 | 2, 49 | syl5 32 |
. 2
|
| 51 | 50 | imp 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-clim 10118 |
| This theorem is referenced by: climcaucn 10188 |
| Copyright terms: Public domain | W3C validator |