ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem Unicode version

Theorem climcvg1nlem 10186
Description: Lemma for climcvg1n 10187. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f  |-  ( ph  ->  F : NN --> CC )
climcvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climcvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
climcvg1nlem.g  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
climcvg1nlem.h  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
climcvg1nlem.j  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
Assertion
Ref Expression
climcvg1nlem  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, x    k, G, n    k, H, n, x    k, J    ph, k, n, x
Allowed substitution hints:    C( x)    F( n)    G( x)    J( x, n)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 8654 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 8378 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 climcvg1n.f . . . . . . . 8  |-  ( ph  ->  F : NN --> CC )
43ffvelrnda 5323 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  CC )
54recld 9825 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( Re
`  ( F `  x ) )  e.  RR )
6 climcvg1nlem.g . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
75, 6fmptd 5343 . . . . 5  |-  ( ph  ->  G : NN --> RR )
8 climcvg1n.c . . . . 5  |-  ( ph  ->  C  e.  RR+ )
9 climcvg1n.cau . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
10 eluznn 8687 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
1110adantll 459 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
123ad2antrr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> CC )
1312, 11ffvelrnd 5324 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  CC )
1413recld 9825 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  k
) )  e.  RR )
15 fveq2 5198 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1615fveq2d 5202 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  k )
) )
1716, 6fvmptg 5269 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  ( Re `  ( F `
 k ) )  e.  RR )  -> 
( G `  k
)  =  ( Re
`  ( F `  k ) ) )
1811, 14, 17syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  =  ( Re `  ( F `
 k ) ) )
19 simplr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2012, 19ffvelrnd 5324 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  CC )
2120recld 9825 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  n
) )  e.  RR )
22 fveq2 5198 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
2322fveq2d 5202 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  n )
) )
2423, 6fvmptg 5269 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( Re `  ( F `
 n ) )  e.  RR )  -> 
( G `  n
)  =  ( Re
`  ( F `  n ) ) )
2519, 21, 24syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  =  ( Re `  ( F `
 n ) ) )
2618, 25oveq12d 5550 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  n ) ) ) )
2713, 20resubd 9848 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Re `  ( F `  k )
)  -  ( Re
`  ( F `  n ) ) ) )
2826, 27eqtr4d 2116 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )
2928fveq2d 5202 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  =  ( abs `  ( Re
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
3013, 20subcld 7419 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  k )  -  ( F `  n ) )  e.  CC )
31 absrele 9969 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
3230, 31syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3329, 32eqbrtrd 3805 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3430recld 9825 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
3534recnd 7147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  CC )
3628, 35eqeltrd 2155 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  e.  CC )
3736abscld 10067 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  e.  RR )
3830abscld 10067 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
398ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
4019nnrpd 8772 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
4139, 40rpdivcld 8791 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
4241rpred 8773 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
43 lelttr 7199 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4437, 38, 42, 43syl3anc 1169 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4533, 44mpand 419 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4645ralimdva 2429 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( G `  k )  -  ( G `  n ) ) )  <  ( C  /  n ) ) )
4746ralimdva 2429 . . . . . 6  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) ) )
489, 47mpd 13 . . . . 5  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) )
497, 8, 48climrecvg1n 10185 . . . 4  |-  ( ph  ->  G  e.  dom  ~~>  )
50 climdm 10134 . . . 4  |-  ( G  e.  dom  ~~>  <->  G  ~~>  (  ~~>  `  G
) )
5149, 50sylib 120 . . 3  |-  ( ph  ->  G  ~~>  (  ~~>  `  G
) )
52 nnex 8045 . . . 4  |-  NN  e.  _V
53 fex 5409 . . . 4  |-  ( ( F : NN --> CC  /\  NN  e.  _V )  ->  F  e.  _V )
543, 52, 53sylancl 404 . . 3  |-  ( ph  ->  F  e.  _V )
554imcld 9826 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( Im
`  ( F `  x ) )  e.  RR )
56 climcvg1nlem.h . . . . . . 7  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
5755, 56fmptd 5343 . . . . . 6  |-  ( ph  ->  H : NN --> RR )
5813imcld 9826 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  k
) )  e.  RR )
5915fveq2d 5202 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  k )
) )
6059, 56fvmptg 5269 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  ( Im `  ( F `
 k ) )  e.  RR )  -> 
( H `  k
)  =  ( Im
`  ( F `  k ) ) )
6111, 58, 60syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  =  ( Im `  ( F `
 k ) ) )
6220imcld 9826 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  n
) )  e.  RR )
6322fveq2d 5202 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  n )
) )
6463, 56fvmptg 5269 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( Im `  ( F `
 n ) )  e.  RR )  -> 
( H `  n
)  =  ( Im
`  ( F `  n ) ) )
6519, 62, 64syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  =  ( Im `  ( F `
 n ) ) )
6661, 65oveq12d 5550 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  n ) ) ) )
6713, 20imsubd 9849 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Im `  ( F `  k )
)  -  ( Im
`  ( F `  n ) ) ) )
6866, 67eqtr4d 2116 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )
6968fveq2d 5202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  =  ( abs `  ( Im
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
70 absimle 9970 . . . . . . . . . . . 12  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
7130, 70syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7269, 71eqbrtrd 3805 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7361, 58eqeltrd 2155 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  e.  RR )
7465, 62eqeltrd 2155 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  e.  RR )
7573, 74resubcld 7485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  RR )
7675recnd 7147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  CC )
7776abscld 10067 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  e.  RR )
78 lelttr 7199 . . . . . . . . . . 11  |-  ( ( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
7977, 38, 42, 78syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8072, 79mpand 419 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8180ralimdva 2429 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( H `  k )  -  ( H `  n ) ) )  <  ( C  /  n ) ) )
8281ralimdva 2429 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) ) )
839, 82mpd 13 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) )
8457, 8, 83climrecvg1n 10185 . . . . 5  |-  ( ph  ->  H  e.  dom  ~~>  )
85 climdm 10134 . . . . 5  |-  ( H  e.  dom  ~~>  <->  H  ~~>  (  ~~>  `  H
) )
8684, 85sylib 120 . . . 4  |-  ( ph  ->  H  ~~>  (  ~~>  `  H
) )
87 ax-icn 7071 . . . . 5  |-  _i  e.  CC
8887a1i 9 . . . 4  |-  ( ph  ->  _i  e.  CC )
89 climcvg1nlem.j . . . . . 6  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
9052mptex 5408 . . . . . 6  |-  ( x  e.  NN  |->  ( _i  x.  ( H `  x ) ) )  e.  _V
9189, 90eqeltri 2151 . . . . 5  |-  J  e. 
_V
9291a1i 9 . . . 4  |-  ( ph  ->  J  e.  _V )
93 ax-resscn 7068 . . . . . . 7  |-  RR  C_  CC
9493a1i 9 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
9557, 94fssd 5075 . . . . 5  |-  ( ph  ->  H : NN --> CC )
9695ffvelrnda 5323 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  e.  CC )
9789a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) ) )
98 fveq2 5198 . . . . . . 7  |-  ( x  =  k  ->  ( H `  x )  =  ( H `  k ) )
9998oveq2d 5548 . . . . . 6  |-  ( x  =  k  ->  (
_i  x.  ( H `  x ) )  =  ( _i  x.  ( H `  k )
) )
10099adantl 271 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  =  k )  -> 
( _i  x.  ( H `  x )
)  =  ( _i  x.  ( H `  k ) ) )
101 simpr 108 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
10287a1i 9 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  _i  e.  CC )
103102, 96mulcld 7139 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  e.  CC )
10497, 100, 101, 103fvmptd 5274 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  ( H `  k )
) )
1051, 2, 86, 88, 92, 96, 104climmulc2 10169 . . 3  |-  ( ph  ->  J  ~~>  ( _i  x.  ( 
~~>  `  H ) ) )
1067ffvelrnda 5323 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
107106recnd 7147 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  CC )
108104, 103eqeltrd 2155 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  e.  CC )
1093ffvelrnda 5323 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
110109replimd 9828 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
111109recld 9825 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  ( F `  k ) )  e.  RR )
112101, 111, 17syl2anc 403 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( Re `  ( F `  k )
) )
113109imcld 9826 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( Im
`  ( F `  k ) )  e.  RR )
114101, 113, 60syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( Im `  ( F `  k )
) )
115114oveq2d 5548 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
116104, 115eqtrd 2113 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
117112, 116oveq12d 5550 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k )  +  ( J `  k ) )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
118110, 117eqtr4d 2116 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( G `  k )  +  ( J `  k ) ) )
1191, 2, 51, 54, 105, 107, 108, 118climadd 10164 . 2  |-  ( ph  ->  F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) ) )
120 climrel 10119 . . 3  |-  Rel  ~~>
121120releldmi 4591 . 2  |-  ( F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) )  ->  F  e.  dom  ~~>  )
122119, 121syl 14 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601    C_ wss 2973   class class class wbr 3785    |-> cmpt 3839   dom cdm 4363   -->wf 4918   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   1c1 6982   _ici 6983    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279    / cdiv 7760   NNcn 8039   ZZ>=cuz 8619   RR+crp 8734   Recre 9727   Imcim 9728   abscabs 9883    ~~> cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-clim 10118
This theorem is referenced by:  climcvg1n  10187
  Copyright terms: Public domain W3C validator