| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crre | Unicode version | ||
| Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| crre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 7106 |
. . . 4
| |
| 2 | ax-icn 7071 |
. . . . 5
| |
| 3 | recn 7106 |
. . . . 5
| |
| 4 | mulcl 7100 |
. . . . 5
| |
| 5 | 2, 3, 4 | sylancr 405 |
. . . 4
|
| 6 | addcl 7098 |
. . . 4
| |
| 7 | 1, 5, 6 | syl2an 283 |
. . 3
|
| 8 | reval 9736 |
. . 3
| |
| 9 | 7, 8 | syl 14 |
. 2
|
| 10 | cjcl 9735 |
. . . . . 6
| |
| 11 | 7, 10 | syl 14 |
. . . . 5
|
| 12 | 7, 11 | addcld 7138 |
. . . 4
|
| 13 | 12 | halfcld 8275 |
. . 3
|
| 14 | 1 | adantr 270 |
. . 3
|
| 15 | recl 9740 |
. . . . . . 7
| |
| 16 | 7, 15 | syl 14 |
. . . . . 6
|
| 17 | 9, 16 | eqeltrrd 2156 |
. . . . 5
|
| 18 | simpl 107 |
. . . . 5
| |
| 19 | 17, 18 | resubcld 7485 |
. . . 4
|
| 20 | 2 | a1i 9 |
. . . . . . 7
|
| 21 | 3 | adantl 271 |
. . . . . . . 8
|
| 22 | 2, 21, 4 | sylancr 405 |
. . . . . . 7
|
| 23 | 7, 11 | subcld 7419 |
. . . . . . . 8
|
| 24 | 23 | halfcld 8275 |
. . . . . . 7
|
| 25 | 20, 22, 24 | subdid 7518 |
. . . . . 6
|
| 26 | 14, 22, 14 | pnpcand 7456 |
. . . . . . . . . . . . . 14
|
| 27 | 22, 14, 22 | pnpcan2d 7457 |
. . . . . . . . . . . . . 14
|
| 28 | 26, 27 | eqtr4d 2116 |
. . . . . . . . . . . . 13
|
| 29 | 28 | oveq1d 5547 |
. . . . . . . . . . . 12
|
| 30 | 14, 14 | addcld 7138 |
. . . . . . . . . . . . 13
|
| 31 | 7, 11, 30 | addsubd 7440 |
. . . . . . . . . . . 12
|
| 32 | 22, 22 | addcld 7138 |
. . . . . . . . . . . . 13
|
| 33 | 32, 7, 11 | subsubd 7447 |
. . . . . . . . . . . 12
|
| 34 | 29, 31, 33 | 3eqtr4d 2123 |
. . . . . . . . . . 11
|
| 35 | 14 | 2timesd 8273 |
. . . . . . . . . . . 12
|
| 36 | 35 | oveq2d 5548 |
. . . . . . . . . . 11
|
| 37 | 22 | 2timesd 8273 |
. . . . . . . . . . . 12
|
| 38 | 37 | oveq1d 5547 |
. . . . . . . . . . 11
|
| 39 | 34, 36, 38 | 3eqtr4d 2123 |
. . . . . . . . . 10
|
| 40 | 39 | oveq1d 5547 |
. . . . . . . . 9
|
| 41 | 2cn 8110 |
. . . . . . . . . . 11
| |
| 42 | mulcl 7100 |
. . . . . . . . . . 11
| |
| 43 | 41, 14, 42 | sylancr 405 |
. . . . . . . . . 10
|
| 44 | 41 | a1i 9 |
. . . . . . . . . 10
|
| 45 | 2ap0 8132 |
. . . . . . . . . . 11
| |
| 46 | 45 | a1i 9 |
. . . . . . . . . 10
|
| 47 | 12, 43, 44, 46 | divsubdirapd 7916 |
. . . . . . . . 9
|
| 48 | mulcl 7100 |
. . . . . . . . . . 11
| |
| 49 | 41, 22, 48 | sylancr 405 |
. . . . . . . . . 10
|
| 50 | 49, 23, 44, 46 | divsubdirapd 7916 |
. . . . . . . . 9
|
| 51 | 40, 47, 50 | 3eqtr3d 2121 |
. . . . . . . 8
|
| 52 | 14, 44, 46 | divcanap3d 7882 |
. . . . . . . . 9
|
| 53 | 52 | oveq2d 5548 |
. . . . . . . 8
|
| 54 | 22, 44, 46 | divcanap3d 7882 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 5547 |
. . . . . . . 8
|
| 56 | 51, 53, 55 | 3eqtr3d 2121 |
. . . . . . 7
|
| 57 | 56 | oveq2d 5548 |
. . . . . 6
|
| 58 | 20, 20, 21 | mulassd 7142 |
. . . . . . 7
|
| 59 | 20, 23, 44, 46 | divassapd 7912 |
. . . . . . 7
|
| 60 | 58, 59 | oveq12d 5550 |
. . . . . 6
|
| 61 | 25, 57, 60 | 3eqtr4d 2123 |
. . . . 5
|
| 62 | ixi 7683 |
. . . . . . . 8
| |
| 63 | neg1rr 8145 |
. . . . . . . 8
| |
| 64 | 62, 63 | eqeltri 2151 |
. . . . . . 7
|
| 65 | simpr 108 |
. . . . . . 7
| |
| 66 | remulcl 7101 |
. . . . . . 7
| |
| 67 | 64, 65, 66 | sylancr 405 |
. . . . . 6
|
| 68 | cjth 9733 |
. . . . . . . . 9
| |
| 69 | 68 | simprd 112 |
. . . . . . . 8
|
| 70 | 7, 69 | syl 14 |
. . . . . . 7
|
| 71 | 70 | rehalfcld 8277 |
. . . . . 6
|
| 72 | 67, 71 | resubcld 7485 |
. . . . 5
|
| 73 | 61, 72 | eqeltrd 2155 |
. . . 4
|
| 74 | rimul 7685 |
. . . 4
| |
| 75 | 19, 73, 74 | syl2anc 403 |
. . 3
|
| 76 | 13, 14, 75 | subeq0d 7427 |
. 2
|
| 77 | 9, 76 | eqtrd 2113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-2 8098 df-cj 9729 df-re 9730 |
| This theorem is referenced by: crim 9745 replim 9746 mulreap 9751 recj 9754 reneg 9755 readd 9756 remullem 9758 rei 9786 crrei 9823 crred 9863 rennim 9888 absreimsq 9953 |
| Copyright terms: Public domain | W3C validator |