ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalg2 Unicode version

Theorem divalg2 10326
Description: The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divalg2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
Distinct variable groups:    D, r    N, r

Proof of Theorem divalg2
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 nnz 8370 . . . 4  |-  ( D  e.  NN  ->  D  e.  ZZ )
2 nnne0 8067 . . . 4  |-  ( D  e.  NN  ->  D  =/=  0 )
31, 2jca 300 . . 3  |-  ( D  e.  NN  ->  ( D  e.  ZZ  /\  D  =/=  0 ) )
4 divalg 10324 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
5 divalgb 10325 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
64, 5mpbid 145 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E! r  e.  NN0  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) )
763expb 1139 . . 3  |-  ( ( N  e.  ZZ  /\  ( D  e.  ZZ  /\  D  =/=  0 ) )  ->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) )
83, 7sylan2 280 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )
9 nnre 8046 . . . . . . 7  |-  ( D  e.  NN  ->  D  e.  RR )
10 nnnn0 8295 . . . . . . . 8  |-  ( D  e.  NN  ->  D  e.  NN0 )
1110nn0ge0d 8344 . . . . . . 7  |-  ( D  e.  NN  ->  0  <_  D )
129, 11absidd 10053 . . . . . 6  |-  ( D  e.  NN  ->  ( abs `  D )  =  D )
1312breq2d 3797 . . . . 5  |-  ( D  e.  NN  ->  (
r  <  ( abs `  D )  <->  r  <  D ) )
1413anbi1d 452 . . . 4  |-  ( D  e.  NN  ->  (
( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) )  <->  ( r  <  D  /\  D  ||  ( N  -  r
) ) ) )
1514reubidv 2537 . . 3  |-  ( D  e.  NN  ->  ( E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) )  <->  E! r  e.  NN0  ( r  < 
D  /\  D  ||  ( N  -  r )
) ) )
1615adantl 271 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( E! r  e. 
NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
)  <->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) ) )
178, 16mpbid 145 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   E.wrex 2349   E!wreu 2350   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   0cc0 6981    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279   NNcn 8039   NN0cn0 8288   ZZcz 8351   abscabs 9883    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  divalgmod  10327  ndvdssub  10330
  Copyright terms: Public domain W3C validator