![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 8066 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | eleq1 2141 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mtbiri 632 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | necon2ai 2299 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1re 7070 ax-addrcl 7073 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-pre-ltirr 7088 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-iota 4887 df-fv 4930 df-ov 5535 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-inn 8040 |
This theorem is referenced by: nnne0d 8083 divfnzn 8706 qreccl 8727 fzo1fzo0n0 9192 expinnval 9479 expnegap0 9484 dvdsval3 10199 nndivdvds 10201 modmulconst 10227 dvdsdivcl 10250 divalg2 10326 ndvdssub 10330 nndvdslegcd 10357 divgcdz 10363 divgcdnn 10366 gcdzeq 10411 eucalgf 10437 eucalginv 10438 lcmgcdlem 10459 qredeu 10479 cncongr1 10485 cncongr2 10486 |
Copyright terms: Public domain | W3C validator |