| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdslelemd | Unicode version | ||
| Description: Lemma for dvdsle 10244. (Contributed by Jim Kingdon, 8-Nov-2021.) |
| Ref | Expression |
|---|---|
| dvdslelemd.1 |
|
| dvdslelemd.2 |
|
| dvdslelemd.3 |
|
| dvdslelemd.lt |
|
| Ref | Expression |
|---|---|
| dvdslelemd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslelemd.3 |
. . . . 5
| |
| 2 | 0z 8362 |
. . . . 5
| |
| 3 | zlelttric 8396 |
. . . . 5
| |
| 4 | 1, 2, 3 | sylancl 404 |
. . . 4
|
| 5 | zgt0ge1 8409 |
. . . . . 6
| |
| 6 | 1, 5 | syl 14 |
. . . . 5
|
| 7 | 6 | orbi2d 736 |
. . . 4
|
| 8 | 4, 7 | mpbid 145 |
. . 3
|
| 9 | 1 | zred 8469 |
. . . . . . . 8
|
| 10 | 9 | adantr 270 |
. . . . . . 7
|
| 11 | dvdslelemd.1 |
. . . . . . . . 9
| |
| 12 | 11 | zred 8469 |
. . . . . . . 8
|
| 13 | 12 | adantr 270 |
. . . . . . 7
|
| 14 | 10, 13 | remulcld 7149 |
. . . . . 6
|
| 15 | 0red 7120 |
. . . . . 6
| |
| 16 | dvdslelemd.2 |
. . . . . . . 8
| |
| 17 | 16 | nnred 8052 |
. . . . . . 7
|
| 18 | 17 | adantr 270 |
. . . . . 6
|
| 19 | 10 | renegcld 7484 |
. . . . . . . 8
|
| 20 | 9 | le0neg1d 7618 |
. . . . . . . . 9
|
| 21 | 20 | biimpa 290 |
. . . . . . . 8
|
| 22 | 0red 7120 |
. . . . . . . . . 10
| |
| 23 | 16 | nngt0d 8082 |
. . . . . . . . . . 11
|
| 24 | dvdslelemd.lt |
. . . . . . . . . . 11
| |
| 25 | 22, 17, 12, 23, 24 | lttrd 7235 |
. . . . . . . . . 10
|
| 26 | 22, 12, 25 | ltled 7228 |
. . . . . . . . 9
|
| 27 | 26 | adantr 270 |
. . . . . . . 8
|
| 28 | 19, 13, 21, 27 | mulge0d 7721 |
. . . . . . 7
|
| 29 | 14 | le0neg1d 7618 |
. . . . . . . 8
|
| 30 | 10 | recnd 7147 |
. . . . . . . . . 10
|
| 31 | 13 | recnd 7147 |
. . . . . . . . . 10
|
| 32 | 30, 31 | mulneg1d 7515 |
. . . . . . . . 9
|
| 33 | 32 | breq2d 3797 |
. . . . . . . 8
|
| 34 | 29, 33 | bitr4d 189 |
. . . . . . 7
|
| 35 | 28, 34 | mpbird 165 |
. . . . . 6
|
| 36 | 23 | adantr 270 |
. . . . . 6
|
| 37 | 14, 15, 18, 35, 36 | lelttrd 7234 |
. . . . 5
|
| 38 | 37 | ex 113 |
. . . 4
|
| 39 | 17 | adantr 270 |
. . . . . 6
|
| 40 | 12 | adantr 270 |
. . . . . 6
|
| 41 | 9 | adantr 270 |
. . . . . . 7
|
| 42 | 41, 40 | remulcld 7149 |
. . . . . 6
|
| 43 | 24 | adantr 270 |
. . . . . 6
|
| 44 | 26 | adantr 270 |
. . . . . . 7
|
| 45 | simpr 108 |
. . . . . . 7
| |
| 46 | 40, 41, 44, 45 | lemulge12d 8016 |
. . . . . 6
|
| 47 | 39, 40, 42, 43, 46 | ltletrd 7527 |
. . . . 5
|
| 48 | 47 | ex 113 |
. . . 4
|
| 49 | 38, 48 | orim12d 732 |
. . 3
|
| 50 | 8, 49 | mpd 13 |
. 2
|
| 51 | zq 8711 |
. . . . 5
| |
| 52 | 1, 51 | syl 14 |
. . . 4
|
| 53 | zq 8711 |
. . . . 5
| |
| 54 | 11, 53 | syl 14 |
. . . 4
|
| 55 | qmulcl 8722 |
. . . 4
| |
| 56 | 52, 54, 55 | syl2anc 403 |
. . 3
|
| 57 | nnq 8718 |
. . . 4
| |
| 58 | 16, 57 | syl 14 |
. . 3
|
| 59 | qlttri2 8726 |
. . 3
| |
| 60 | 56, 58, 59 | syl2anc 403 |
. 2
|
| 61 | 50, 60 | mpbird 165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-q 8705 |
| This theorem is referenced by: dvdsle 10244 |
| Copyright terms: Public domain | W3C validator |