ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsnprmd Unicode version

Theorem dvdsnprmd 10507
Description: If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g  |-  ( ph  ->  1  <  A )
dvdsnprmd.l  |-  ( ph  ->  A  <  N )
dvdsnprmd.d  |-  ( ph  ->  A  ||  N )
Assertion
Ref Expression
dvdsnprmd  |-  ( ph  ->  -.  N  e.  Prime )

Proof of Theorem dvdsnprmd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2  |-  ( ph  ->  A  ||  N )
2 dvdszrcl 10200 . . . 4  |-  ( A 
||  N  ->  ( A  e.  ZZ  /\  N  e.  ZZ ) )
3 divides 10197 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  ||  N  <->  E. k  e.  ZZ  (
k  x.  A )  =  N ) )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  ( A  ||  N  <->  E. k  e.  ZZ  (
k  x.  A )  =  N ) )
5 2z 8379 . . . . . . . . 9  |-  2  e.  ZZ
65a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
2  e.  ZZ )
7 simplr 496 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
k  e.  ZZ )
8 dvdsnprmd.l . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  N )
98adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  < 
N )
109adantr 270 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  <  N )
11 breq2 3789 . . . . . . . . . . . 12  |-  ( ( k  x.  A )  =  N  ->  ( A  <  ( k  x.  A )  <->  A  <  N ) )
1211adantl 271 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( A  <  (
k  x.  A )  <-> 
A  <  N )
)
1310, 12mpbird 165 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  <  ( k  x.  A ) )
14 dvdsnprmd.g . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <  A )
15 zre 8355 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ZZ  ->  A  e.  RR )
16153ad2ant1 959 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  A  e.  RR )
17 zre 8355 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ZZ  ->  k  e.  RR )
18173ad2ant3 961 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  k  e.  RR )
19 0lt1 7236 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
20 0red 7120 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  0  e.  RR )
21 1red 7134 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  1  e.  RR )
22 lttr 7185 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
2320, 21, 15, 22syl3anc 1169 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ZZ  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
2419, 23mpani 420 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  0  <  A ) )
2524imp 122 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
0  <  A )
26253adant3 958 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  0  <  A )
2716, 18, 263jca 1118 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  < 
A ) )
28273exp 1137 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
2928adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
301, 2, 293syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
3114, 30mpd 13 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) )
3231imp 122 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  < 
A ) )
3332adantr 270 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) )
34 ltmulgt12 7943 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  RR  /\  0  <  A )  ->  (
1  <  k  <->  A  <  ( k  x.  A ) ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( 1  <  k  <->  A  <  ( k  x.  A ) ) )
3613, 35mpbird 165 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
1  <  k )
37 df-2 8098 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3837breq1i 3792 . . . . . . . . . 10  |-  ( 2  <_  k  <->  ( 1  +  1 )  <_ 
k )
39 1zzd 8378 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  1  e.  ZZ )
40 zltp1le 8405 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  k  e.  ZZ )  ->  ( 1  <  k  <->  ( 1  +  1 )  <_  k ) )
4139, 40mpancom 413 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
1  <  k  <->  ( 1  +  1 )  <_ 
k ) )
4241bicomd 139 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
( 1  +  1 )  <_  k  <->  1  <  k ) )
4342adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( 1  +  1 )  <_  k  <->  1  <  k ) )
4443adantr 270 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( ( 1  +  1 )  <_  k  <->  1  <  k ) )
4538, 44syl5bb 190 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( 2  <_  k  <->  1  <  k ) )
4636, 45mpbird 165 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
2  <_  k )
47 eluz2 8625 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  k  e.  ZZ  /\  2  <_ 
k ) )
486, 7, 46, 47syl3anbrc 1122 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
k  e.  ( ZZ>= ` 
2 ) )
495a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
2  e.  ZZ )
50 simpl 107 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  ->  A  e.  ZZ )
51 1zzd 8378 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
52 zltp1le 8405 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  A  <->  ( 1  +  1 )  <_  A ) )
5351, 52mpancom 413 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  (
1  <  A  <->  ( 1  +  1 )  <_  A ) )
5453biimpa 290 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
( 1  +  1 )  <_  A )
5537breq1i 3792 . . . . . . . . . . . . . . . 16  |-  ( 2  <_  A  <->  ( 1  +  1 )  <_  A )
5654, 55sylibr 132 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
2  <_  A )
5749, 50, 563jca 1118 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
5857ex 113 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
5958adantr 270 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
601, 2, 593syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
6114, 60mpd 13 . . . . . . . . . 10  |-  ( ph  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
62 eluz2 8625 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
6361, 62sylibr 132 . . . . . . . . 9  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
6463adantr 270 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  e.  ( ZZ>= `  2 )
)
6564adantr 270 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  e.  ( ZZ>= ` 
2 ) )
66 nprm 10505 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  ( ZZ>= `  2 )
)  ->  -.  (
k  x.  A )  e.  Prime )
6748, 65, 66syl2anc 403 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  -.  ( k  x.  A
)  e.  Prime )
68 eleq1 2141 . . . . . . . 8  |-  ( ( k  x.  A )  =  N  ->  (
( k  x.  A
)  e.  Prime  <->  N  e.  Prime ) )
6968notbid 624 . . . . . . 7  |-  ( ( k  x.  A )  =  N  ->  ( -.  ( k  x.  A
)  e.  Prime  <->  -.  N  e.  Prime ) )
7069adantl 271 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( -.  ( k  x.  A )  e. 
Prime 
<->  -.  N  e.  Prime ) )
7167, 70mpbid 145 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  -.  N  e.  Prime )
7271ex 113 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( k  x.  A )  =  N  ->  -.  N  e.  Prime ) )
7372rexlimdva 2477 . . 3  |-  ( ph  ->  ( E. k  e.  ZZ  ( k  x.  A )  =  N  ->  -.  N  e.  Prime ) )
744, 73sylbid 148 . 2  |-  ( ph  ->  ( A  ||  N  ->  -.  N  e.  Prime ) )
751, 74mpd 13 1  |-  ( ph  ->  -.  N  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154   2c2 8089   ZZcz 8351   ZZ>=cuz 8619    || cdvds 10195   Primecprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-prm 10490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator