ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnp1st2nd Unicode version

Theorem elnp1st2nd 6666
Description: Membership in positive reals, using  1st and  2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
Assertion
Ref Expression
elnp1st2nd  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Distinct variable group:    r, q, A

Proof of Theorem elnp1st2nd
StepHypRef Expression
1 npsspw 6661 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 2995 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 prop 6665 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
4 elinp 6664 . . . . . . 7  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  <->  ( ( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
53, 4sylib 120 . . . . . 6  |-  ( A  e.  P.  ->  (
( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
65simpld 110 . . . . 5  |-  ( A  e.  P.  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
76simprd 112 . . . 4  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )
82, 7jca 300 . . 3  |-  ( A  e.  P.  ->  ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) ) )
95simprd 112 . . 3  |-  ( A  e.  P.  ->  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )
108, 9jca 300 . 2  |-  ( A  e.  P.  ->  (
( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
11 1st2nd2 5821 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
1211ad2antrr 471 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
13 xp1st 5812 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
1413elpwid 3392 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  C_  Q. )
15 xp2nd 5813 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
1615elpwid 3392 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  C_  Q. )
1714, 16jca 300 . . . . . 6  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. ) )
1817anim1i 333 . . . . 5  |-  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
1918anim1i 333 . . . 4  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  ( (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
2019, 4sylibr 132 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. )
2112, 20eqeltrd 2155 . 2  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  e.  P. )
2210, 21impbii 124 1  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   ~Pcpw 3382   <.cop 3401   class class class wbr 3785    X. cxp 4361   ` cfv 4922   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    <Q cltq 6475   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1st 5787  df-2nd 5788  df-qs 6135  df-ni 6494  df-nqqs 6538  df-inp 6656
This theorem is referenced by:  addclpr  6727  mulclpr  6762  ltexprlempr  6798  recexprlempr  6822  cauappcvgprlemcl  6843  caucvgprlemcl  6866  caucvgprprlemcl  6894
  Copyright terms: Public domain W3C validator