ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlempr Unicode version

Theorem recexprlempr 6822
Description:  B is a positive real. Lemma for recexpr 6828. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlempr  |-  ( A  e.  P.  ->  B  e.  P. )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlempr
Dummy variables  r  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . 4  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlemm 6814 . . 3  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
3 ltrelnq 6555 . . . . . . . . . . 11  |-  <Q  C_  ( Q.  X.  Q. )
43brel 4410 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
54simpld 110 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
65adantr 270 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
76exlimiv 1529 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
87abssi 3069 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
9 nqex 6553 . . . . . . 7  |-  Q.  e.  _V
109elpw2 3932 . . . . . 6  |-  ( { x  |  E. y
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) }  e.  ~P Q.  <->  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q. )
118, 10mpbir 144 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  ~P Q.
123brel 4410 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
1312simprd 112 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
1413adantr 270 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
1514exlimiv 1529 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
1615abssi 3069 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
179elpw2 3932 . . . . . 6  |-  ( { x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }  e.  ~P Q.  <->  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q. )
1816, 17mpbir 144 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  ~P Q.
19 opelxpi 4394 . . . . 5  |-  ( ( { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) }  e.  ~P Q.  /\  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  ~P Q. )  ->  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.  e.  ( ~P Q.  X.  ~P Q. ) )
2011, 18, 19mp2an 416 . . . 4  |-  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.  e.  ( ~P Q.  X.  ~P Q. )
211, 20eqeltri 2151 . . 3  |-  B  e.  ( ~P Q.  X.  ~P Q. )
222, 21jctil 305 . 2  |-  ( A  e.  P.  ->  ( B  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  B )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) ) )
231recexprlemrnd 6819 . . 3  |-  ( A  e.  P.  ->  ( A. q  e.  Q.  ( q  e.  ( 1st `  B )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
241recexprlemdisj 6820 . . 3  |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
251recexprlemloc 6821 . . 3  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
2623, 24, 253jca 1118 . 2  |-  ( A  e.  P.  ->  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  B
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) ) )
27 elnp1st2nd 6666 . 2  |-  ( B  e.  P.  <->  ( ( B  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  B )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  B
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) ) ) )
2822, 26, 27sylanbrc 408 1  |-  ( A  e.  P.  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349    C_ wss 2973   ~Pcpw 3382   <.cop 3401   class class class wbr 3785    X. cxp 4361   ` cfv 4922   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470   *Qcrq 6474    <Q cltq 6475   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656
This theorem is referenced by:  recexprlem1ssl  6823  recexprlem1ssu  6824  recexprlemss1l  6825  recexprlemss1u  6826  recexprlemex  6827  recexpr  6828
  Copyright terms: Public domain W3C validator