| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elinp | Unicode version | ||
| Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| Ref | Expression |
|---|---|
| elinp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npsspw 6661 |
. . . . 5
| |
| 2 | 1 | sseli 2995 |
. . . 4
|
| 3 | opelxp 4392 |
. . . 4
| |
| 4 | 2, 3 | sylib 120 |
. . 3
|
| 5 | elex 2610 |
. . . 4
| |
| 6 | elex 2610 |
. . . 4
| |
| 7 | 5, 6 | anim12i 331 |
. . 3
|
| 8 | 4, 7 | syl 14 |
. 2
|
| 9 | nqex 6553 |
. . . . 5
| |
| 10 | 9 | ssex 3915 |
. . . 4
|
| 11 | 9 | ssex 3915 |
. . . 4
|
| 12 | 10, 11 | anim12i 331 |
. . 3
|
| 13 | 12 | ad2antrr 471 |
. 2
|
| 14 | df-inp 6656 |
. . . 4
| |
| 15 | 14 | eleq2i 2145 |
. . 3
|
| 16 | sseq1 3020 |
. . . . . . 7
| |
| 17 | 16 | anbi1d 452 |
. . . . . 6
|
| 18 | eleq2 2142 |
. . . . . . . 8
| |
| 19 | 18 | rexbidv 2369 |
. . . . . . 7
|
| 20 | 19 | anbi1d 452 |
. . . . . 6
|
| 21 | 17, 20 | anbi12d 456 |
. . . . 5
|
| 22 | eleq2 2142 |
. . . . . . . . . . 11
| |
| 23 | 22 | anbi2d 451 |
. . . . . . . . . 10
|
| 24 | 23 | rexbidv 2369 |
. . . . . . . . 9
|
| 25 | 18, 24 | bibi12d 233 |
. . . . . . . 8
|
| 26 | 25 | ralbidv 2368 |
. . . . . . 7
|
| 27 | 26 | anbi1d 452 |
. . . . . 6
|
| 28 | 18 | anbi1d 452 |
. . . . . . . 8
|
| 29 | 28 | notbid 624 |
. . . . . . 7
|
| 30 | 29 | ralbidv 2368 |
. . . . . 6
|
| 31 | 18 | orbi1d 737 |
. . . . . . . 8
|
| 32 | 31 | imbi2d 228 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2390 |
. . . . . 6
|
| 34 | 27, 30, 33 | 3anbi123d 1243 |
. . . . 5
|
| 35 | 21, 34 | anbi12d 456 |
. . . 4
|
| 36 | sseq1 3020 |
. . . . . . 7
| |
| 37 | 36 | anbi2d 451 |
. . . . . 6
|
| 38 | eleq2 2142 |
. . . . . . . 8
| |
| 39 | 38 | rexbidv 2369 |
. . . . . . 7
|
| 40 | 39 | anbi2d 451 |
. . . . . 6
|
| 41 | 37, 40 | anbi12d 456 |
. . . . 5
|
| 42 | eleq2 2142 |
. . . . . . . . . . 11
| |
| 43 | 42 | anbi2d 451 |
. . . . . . . . . 10
|
| 44 | 43 | rexbidv 2369 |
. . . . . . . . 9
|
| 45 | 38, 44 | bibi12d 233 |
. . . . . . . 8
|
| 46 | 45 | ralbidv 2368 |
. . . . . . 7
|
| 47 | 46 | anbi2d 451 |
. . . . . 6
|
| 48 | 42 | anbi2d 451 |
. . . . . . . 8
|
| 49 | 48 | notbid 624 |
. . . . . . 7
|
| 50 | 49 | ralbidv 2368 |
. . . . . 6
|
| 51 | 38 | orbi2d 736 |
. . . . . . . 8
|
| 52 | 51 | imbi2d 228 |
. . . . . . 7
|
| 53 | 52 | 2ralbidv 2390 |
. . . . . 6
|
| 54 | 47, 50, 53 | 3anbi123d 1243 |
. . . . 5
|
| 55 | 41, 54 | anbi12d 456 |
. . . 4
|
| 56 | 35, 55 | opelopabg 4023 |
. . 3
|
| 57 | 15, 56 | syl5bb 190 |
. 2
|
| 58 | 8, 13, 57 | pm5.21nii 652 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-qs 6135 df-ni 6494 df-nqqs 6538 df-inp 6656 |
| This theorem is referenced by: elnp1st2nd 6666 prml 6667 prmu 6668 prssnql 6669 prssnqu 6670 prcdnql 6674 prcunqu 6675 prltlu 6677 prnmaxl 6678 prnminu 6679 prloc 6681 prdisj 6682 nqprxx 6736 |
| Copyright terms: Public domain | W3C validator |