ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp2 Unicode version

Theorem elxp2 4381
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
Assertion
Ref Expression
elxp2  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp2
StepHypRef Expression
1 df-rex 2354 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  E. y
( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
) )
2 r19.42v 2511 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
) )
3 an13 527 . . . . 5  |-  ( ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
)  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
43exbii 1536 . . . 4  |-  ( E. y ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y
>. ) )  <->  E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
51, 2, 43bitr3i 208 . . 3  |-  ( ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. )  <->  E. y ( A  =  <. x ,  y
>.  /\  ( x  e.  B  /\  y  e.  C ) ) )
65exbii 1536 . 2  |-  ( E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
)  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
7 df-rex 2354 . 2  |-  ( E. x  e.  B  E. y  e.  C  A  =  <. x ,  y
>. 
<->  E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. ) )
8 elxp 4380 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
96, 7, 83bitr4ri 211 1  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   <.cop 3401    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369
This theorem is referenced by:  opelxp  4392  xpiundi  4416  xpiundir  4417  ssrel2  4448  f1o2ndf1  5869  xpdom2  6328  elreal  6997
  Copyright terms: Public domain W3C validator