ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrel2 Unicode version

Theorem ssrel2 4448
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4446 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y

Proof of Theorem ssrel2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 2993 . . . 4  |-  ( R 
C_  S  ->  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
) )
21a1d 22 . . 3  |-  ( R 
C_  S  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
32ralrimivv 2442 . 2  |-  ( R 
C_  S  ->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) )
4 eleq1 2141 . . . . . . . . . . . 12  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
5 eleq1 2141 . . . . . . . . . . . 12  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  S  <->  <. x ,  y
>.  e.  S ) )
64, 5imbi12d 232 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( ( z  e.  R  ->  z  e.  S )  <->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
76biimprcd 158 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
87ralimi 2426 . . . . . . . . 9  |-  ( A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  A. y  e.  B  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
98ralimi 2426 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  A. x  e.  A  A. y  e.  B  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
10 r19.23v 2469 . . . . . . . . . 10  |-  ( A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1110ralbii 2372 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
12 r19.23v 2469 . . . . . . . . 9  |-  ( A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1311, 12bitri 182 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
149, 13sylib 120 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1514com23 77 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  e.  R  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  z  e.  S
) ) )
1615a2d 26 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( (
z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. )  ->  (
z  e.  R  -> 
z  e.  S ) ) )
1716alimdv 1800 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( A. z ( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)  ->  A. z
( z  e.  R  ->  z  e.  S ) ) )
18 dfss2 2988 . . . . 5  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  z  e.  ( A  X.  B ) ) )
19 elxp2 4381 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  <->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)
2019imbi2i 224 . . . . . 6  |-  ( ( z  e.  R  -> 
z  e.  ( A  X.  B ) )  <-> 
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2120albii 1399 . . . . 5  |-  ( A. z ( z  e.  R  ->  z  e.  ( A  X.  B
) )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2218, 21bitri 182 . . . 4  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
23 dfss2 2988 . . . 4  |-  ( R 
C_  S  <->  A. z
( z  e.  R  ->  z  e.  S ) )
2417, 22, 233imtr4g 203 . . 3  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( R  C_  ( A  X.  B
)  ->  R  C_  S
) )
2524com12 30 . 2  |-  ( R 
C_  ( A  X.  B )  ->  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y
>.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  R  C_  S
) )
263, 25impbid2 141 1  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   <.cop 3401    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator