| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0sym | Unicode version | ||
| Description: The equivalence relation for non-negative fractions is symmetric. Lemma for enq0er 6625. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0sym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 |
. . . . . . . 8
| |
| 2 | vex 2604 |
. . . . . . . 8
| |
| 3 | eleq1 2141 |
. . . . . . . . . 10
| |
| 4 | 3 | anbi1d 452 |
. . . . . . . . 9
|
| 5 | eqeq1 2087 |
. . . . . . . . . . . 12
| |
| 6 | 5 | anbi1d 452 |
. . . . . . . . . . 11
|
| 7 | 6 | anbi1d 452 |
. . . . . . . . . 10
|
| 8 | 7 | 4exbidv 1791 |
. . . . . . . . 9
|
| 9 | 4, 8 | anbi12d 456 |
. . . . . . . 8
|
| 10 | eleq1 2141 |
. . . . . . . . . 10
| |
| 11 | 10 | anbi2d 451 |
. . . . . . . . 9
|
| 12 | eqeq1 2087 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi2d 451 |
. . . . . . . . . . 11
|
| 14 | 13 | anbi1d 452 |
. . . . . . . . . 10
|
| 15 | 14 | 4exbidv 1791 |
. . . . . . . . 9
|
| 16 | 11, 15 | anbi12d 456 |
. . . . . . . 8
|
| 17 | df-enq0 6614 |
. . . . . . . 8
| |
| 18 | 1, 2, 9, 16, 17 | brab 4027 |
. . . . . . 7
|
| 19 | 18 | biimpi 118 |
. . . . . 6
|
| 20 | opeq12 3572 |
. . . . . . . . . . 11
| |
| 21 | 20 | eqeq2d 2092 |
. . . . . . . . . 10
|
| 22 | 21 | anbi1d 452 |
. . . . . . . . 9
|
| 23 | simpl 107 |
. . . . . . . . . . 11
| |
| 24 | 23 | oveq1d 5547 |
. . . . . . . . . 10
|
| 25 | simpr 108 |
. . . . . . . . . . 11
| |
| 26 | 25 | oveq1d 5547 |
. . . . . . . . . 10
|
| 27 | 24, 26 | eqeq12d 2095 |
. . . . . . . . 9
|
| 28 | 22, 27 | anbi12d 456 |
. . . . . . . 8
|
| 29 | opeq12 3572 |
. . . . . . . . . . 11
| |
| 30 | 29 | eqeq2d 2092 |
. . . . . . . . . 10
|
| 31 | 30 | anbi2d 451 |
. . . . . . . . 9
|
| 32 | simpr 108 |
. . . . . . . . . . 11
| |
| 33 | 32 | oveq2d 5548 |
. . . . . . . . . 10
|
| 34 | simpl 107 |
. . . . . . . . . . 11
| |
| 35 | 34 | oveq2d 5548 |
. . . . . . . . . 10
|
| 36 | 33, 35 | eqeq12d 2095 |
. . . . . . . . 9
|
| 37 | 31, 36 | anbi12d 456 |
. . . . . . . 8
|
| 38 | 28, 37 | cbvex4v 1846 |
. . . . . . 7
|
| 39 | 38 | anbi2i 444 |
. . . . . 6
|
| 40 | 19, 39 | sylib 120 |
. . . . 5
|
| 41 | 19.42vv 1829 |
. . . . 5
| |
| 42 | 40, 41 | sylibr 132 |
. . . 4
|
| 43 | 19.42vv 1829 |
. . . . 5
| |
| 44 | 43 | 2exbii 1537 |
. . . 4
|
| 45 | 42, 44 | sylibr 132 |
. . 3
|
| 46 | pm3.22 261 |
. . . . . . 7
| |
| 47 | 46 | adantr 270 |
. . . . . 6
|
| 48 | pm3.22 261 |
. . . . . . 7
| |
| 49 | 48 | ad2antrl 473 |
. . . . . 6
|
| 50 | simprr 498 |
. . . . . . . 8
| |
| 51 | eleq1 2141 |
. . . . . . . . . . . . . 14
| |
| 52 | opelxp 4392 |
. . . . . . . . . . . . . 14
| |
| 53 | 51, 52 | syl6bb 194 |
. . . . . . . . . . . . 13
|
| 54 | 53 | biimpcd 157 |
. . . . . . . . . . . 12
|
| 55 | eleq1 2141 |
. . . . . . . . . . . . . 14
| |
| 56 | opelxp 4392 |
. . . . . . . . . . . . . 14
| |
| 57 | 55, 56 | syl6bb 194 |
. . . . . . . . . . . . 13
|
| 58 | 57 | biimpcd 157 |
. . . . . . . . . . . 12
|
| 59 | 54, 58 | im2anan9 562 |
. . . . . . . . . . 11
|
| 60 | 59 | imp 122 |
. . . . . . . . . 10
|
| 61 | 60 | adantrr 462 |
. . . . . . . . 9
|
| 62 | pinn 6499 |
. . . . . . . . . . . 12
| |
| 63 | nnmcom 6091 |
. . . . . . . . . . . 12
| |
| 64 | 62, 63 | sylan2 280 |
. . . . . . . . . . 11
|
| 65 | pinn 6499 |
. . . . . . . . . . . 12
| |
| 66 | nnmcom 6091 |
. . . . . . . . . . . 12
| |
| 67 | 65, 66 | sylan 277 |
. . . . . . . . . . 11
|
| 68 | 64, 67 | eqeqan12d 2096 |
. . . . . . . . . 10
|
| 69 | 68 | an42s 553 |
. . . . . . . . 9
|
| 70 | 61, 69 | syl 14 |
. . . . . . . 8
|
| 71 | 50, 70 | mpbid 145 |
. . . . . . 7
|
| 72 | 71 | eqcomd 2086 |
. . . . . 6
|
| 73 | 47, 49, 72 | jca32 303 |
. . . . 5
|
| 74 | 73 | 2eximi 1532 |
. . . 4
|
| 75 | 74 | 2eximi 1532 |
. . 3
|
| 76 | 45, 75 | syl 14 |
. 2
|
| 77 | exrot4 1621 |
. . 3
| |
| 78 | 19.42vv 1829 |
. . . . 5
| |
| 79 | 78 | 2exbii 1537 |
. . . 4
|
| 80 | 19.42vv 1829 |
. . . . 5
| |
| 81 | opeq12 3572 |
. . . . . . . . . 10
| |
| 82 | 81 | eqeq2d 2092 |
. . . . . . . . 9
|
| 83 | 82 | anbi1d 452 |
. . . . . . . 8
|
| 84 | simpl 107 |
. . . . . . . . . 10
| |
| 85 | 84 | oveq1d 5547 |
. . . . . . . . 9
|
| 86 | simpr 108 |
. . . . . . . . . 10
| |
| 87 | 86 | oveq1d 5547 |
. . . . . . . . 9
|
| 88 | 85, 87 | eqeq12d 2095 |
. . . . . . . 8
|
| 89 | 83, 88 | anbi12d 456 |
. . . . . . 7
|
| 90 | opeq12 3572 |
. . . . . . . . . 10
| |
| 91 | 90 | eqeq2d 2092 |
. . . . . . . . 9
|
| 92 | 91 | anbi2d 451 |
. . . . . . . 8
|
| 93 | simpr 108 |
. . . . . . . . . 10
| |
| 94 | 93 | oveq2d 5548 |
. . . . . . . . 9
|
| 95 | simpl 107 |
. . . . . . . . . 10
| |
| 96 | 95 | oveq2d 5548 |
. . . . . . . . 9
|
| 97 | 94, 96 | eqeq12d 2095 |
. . . . . . . 8
|
| 98 | 92, 97 | anbi12d 456 |
. . . . . . 7
|
| 99 | 89, 98 | cbvex4v 1846 |
. . . . . 6
|
| 100 | eleq1 2141 |
. . . . . . . . . 10
| |
| 101 | 100 | anbi1d 452 |
. . . . . . . . 9
|
| 102 | eqeq1 2087 |
. . . . . . . . . . . 12
| |
| 103 | 102 | anbi1d 452 |
. . . . . . . . . . 11
|
| 104 | 103 | anbi1d 452 |
. . . . . . . . . 10
|
| 105 | 104 | 4exbidv 1791 |
. . . . . . . . 9
|
| 106 | 101, 105 | anbi12d 456 |
. . . . . . . 8
|
| 107 | eleq1 2141 |
. . . . . . . . . 10
| |
| 108 | 107 | anbi2d 451 |
. . . . . . . . 9
|
| 109 | eqeq1 2087 |
. . . . . . . . . . . 12
| |
| 110 | 109 | anbi2d 451 |
. . . . . . . . . . 11
|
| 111 | 110 | anbi1d 452 |
. . . . . . . . . 10
|
| 112 | 111 | 4exbidv 1791 |
. . . . . . . . 9
|
| 113 | 108, 112 | anbi12d 456 |
. . . . . . . 8
|
| 114 | 2, 1, 106, 113, 17 | brab 4027 |
. . . . . . 7
|
| 115 | 114 | biimpri 131 |
. . . . . 6
|
| 116 | 99, 115 | sylan2br 282 |
. . . . 5
|
| 117 | 80, 116 | sylbi 119 |
. . . 4
|
| 118 | 79, 117 | sylbi 119 |
. . 3
|
| 119 | 77, 118 | sylbi 119 |
. 2
|
| 120 | 76, 119 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-ni 6494 df-enq0 6614 |
| This theorem is referenced by: enq0er 6625 |
| Copyright terms: Public domain | W3C validator |