ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirq Unicode version

Theorem recidpirq 7026
Description: A real number times its reciprocal is one, where reciprocal is expressed with  *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
recidpirq  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
Distinct variable group:    N, l, u

Proof of Theorem recidpirq
StepHypRef Expression
1 nnprlu 6743 . . . 4  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
2 prsrcl 6960 . . . 4  |-  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  ->  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
31, 2syl 14 . . 3  |-  ( N  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
4 recnnpr 6738 . . . 4  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
5 prsrcl 6960 . . . 4  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  ->  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
64, 5syl 14 . . 3  |-  ( N  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7 mulresr 7006 . . 3  |-  ( ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R.  /\  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
83, 6, 7syl2anc 403 . 2  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
9 1pr 6744 . . . . . . . 8  |-  1P  e.  P.
109a1i 9 . . . . . . 7  |-  ( N  e.  N.  ->  1P  e.  P. )
11 addclpr 6727 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
121, 10, 11syl2anc 403 . . . . . 6  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
13 addclpr 6727 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )
144, 10, 13syl2anc 403 . . . . . 6  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )
15 mulsrpr 6923 . . . . . 6  |-  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  (
( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  )
1612, 10, 14, 10, 15syl22anc 1170 . . . . 5  |-  ( N  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  )
17 recidpipr 7024 . . . . . . 7  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
181, 4, 17recidpirqlemcalc 7025 . . . . . 6  |-  ( N  e.  N.  ->  (
( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
19 df-1r 6909 . . . . . . . 8  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2019eqeq2i 2091 . . . . . . 7  |-  ( [
<. ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  1R  <->  [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
21 mulclpr 6762 . . . . . . . . . 10  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  ( <. { l  |  l  <Q 
( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )  ->  ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  e.  P. )
2212, 14, 21syl2anc 403 . . . . . . . . 9  |-  ( N  e.  N.  ->  (
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  e.  P. )
239, 9pm3.2i 266 . . . . . . . . . 10  |-  ( 1P  e.  P.  /\  1P  e.  P. )
24 mulclpr 6762 . . . . . . . . . 10  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  .P.  1P )  e.  P. )
2523, 24mp1i 10 . . . . . . . . 9  |-  ( N  e.  N.  ->  ( 1P  .P.  1P )  e. 
P. )
26 addclpr 6727 . . . . . . . . 9  |-  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  e.  P.  /\  ( 1P  .P.  1P )  e.  P. )  -> 
( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  e. 
P. )
2722, 25, 26syl2anc 403 . . . . . . . 8  |-  ( N  e.  N.  ->  (
( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  e. 
P. )
28 mulclpr 6762 . . . . . . . . . 10  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  e.  P. )
2912, 10, 28syl2anc 403 . . . . . . . . 9  |-  ( N  e.  N.  ->  (
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  e.  P. )
30 mulclpr 6762 . . . . . . . . . 10  |-  ( ( 1P  e.  P.  /\  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  e.  P. )  ->  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )  e.  P. )
3110, 14, 30syl2anc 403 . . . . . . . . 9  |-  ( N  e.  N.  ->  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )  e.  P. )
32 addclpr 6727 . . . . . . . . 9  |-  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  1P )  e.  P.  /\  ( 1P  .P.  ( <. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )  e.  P. )  ->  ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  e.  P. )
3329, 31, 32syl2anc 403 . . . . . . . 8  |-  ( N  e.  N.  ->  (
( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  e.  P. )
34 addclpr 6727 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
3523, 34mp1i 10 . . . . . . . 8  |-  ( N  e.  N.  ->  ( 1P  +P.  1P )  e. 
P. )
36 enreceq 6913 . . . . . . . 8  |-  ( ( ( ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  e. 
P.  /\  ( (
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  e.  P. )  /\  ( ( 1P 
+P.  1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
3727, 33, 35, 10, 36syl22anc 1170 . . . . . . 7  |-  ( N  e.  N.  ->  ( [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
3820, 37syl5bb 190 . . . . . 6  |-  ( N  e.  N.  ->  ( [ <. ( ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  1R  <->  ( ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) )  +P. 
1P )  =  ( ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
3918, 38mpbird 165 . . . . 5  |-  ( N  e.  N.  ->  [ <. ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )
)  +P.  ( 1P  .P.  1P ) ) ,  ( ( ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ) ) >. ]  ~R  =  1R )
4016, 39eqtrd 2113 . . . 4  |-  ( N  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  1R )
4140opeq1d 3576 . . 3  |-  ( N  e.  N.  ->  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  =  <. 1R ,  0R >. )
42 df-1 6989 . . 3  |-  1  =  <. 1R ,  0R >.
4341, 42syl6eqr 2131 . 2  |-  ( N  e.  N.  ->  <. ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  .R  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  =  1
)
448, 43eqtrd 2113 1  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1oc1o 6017   [cec 6127   N.cnpi 6462    ~Q ceq 6469   *Qcrq 6474    <Q cltq 6475   P.cnp 6481   1Pc1p 6482    +P. cpp 6483    .P. cmp 6484    ~R cer 6486   R.cnr 6487   0Rc0r 6488   1Rc1r 6489    .R cmr 6492   1c1 6982    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-enr 6903  df-nr 6904  df-plr 6905  df-mr 6906  df-0r 6908  df-1r 6909  df-m1r 6910  df-c 6987  df-1 6989  df-mul 6993
This theorem is referenced by:  recriota  7056
  Copyright terms: Public domain W3C validator