ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap Unicode version

Theorem expcl2lemap 9488
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
expcl2lemap.4  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
1  /  x )  e.  F )
Assertion
Ref Expression
expcl2lemap  |-  ( ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Distinct variable groups:    x, y, A   
x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcl2lemap
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 8365 . . 3  |-  ( B  e.  ZZ  <->  ( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) ) )
2 expcllem.1 . . . . . . 7  |-  F  C_  CC
3 expcllem.2 . . . . . . 7  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
4 expcllem.3 . . . . . . 7  |-  1  e.  F
52, 3, 4expcllem 9487 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
65ex 113 . . . . 5  |-  ( A  e.  F  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
76adantr 270 . . . 4  |-  ( ( A  e.  F  /\  A #  0 )  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
8 simpll 495 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  F )
92, 8sseldi 2997 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  CC )
10 simplr 496 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A #  0 )
11 simprl 497 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  RR )
1211recnd 7147 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  CC )
13 nnnn0 8295 . . . . . . . 8  |-  ( -u B  e.  NN  ->  -u B  e.  NN0 )
1413ad2antll 474 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  -u B  e.  NN0 )
15 expineg2 9485 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  -u B  e.  NN0 ) )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
169, 10, 12, 14, 15syl22anc 1170 . . . . . 6  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
17 ssrab2 3079 . . . . . . . 8  |-  { z  e.  F  |  z #  0 }  C_  F
18 simpl 107 . . . . . . . . . 10  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A  e.  F  /\  A #  0 ) )
19 breq1 3788 . . . . . . . . . . 11  |-  ( z  =  A  ->  (
z #  0  <->  A #  0
) )
2019elrab 2749 . . . . . . . . . 10  |-  ( A  e.  { z  e.  F  |  z #  0 }  <->  ( A  e.  F  /\  A #  0 ) )
2118, 20sylibr 132 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  { z  e.  F  |  z #  0 }
)
2217, 2sstri 3008 . . . . . . . . . 10  |-  { z  e.  F  |  z #  0 }  C_  CC
2317sseli 2995 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  F  |  z #  0 }  ->  x  e.  F )
2417sseli 2995 . . . . . . . . . . . 12  |-  ( y  e.  { z  e.  F  |  z #  0 }  ->  y  e.  F )
2523, 24, 3syl2an 283 . . . . . . . . . . 11  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y )  e.  F
)
26 breq1 3788 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
z #  0  <->  x #  0
) )
2726elrab 2749 . . . . . . . . . . . . 13  |-  ( x  e.  { z  e.  F  |  z #  0 }  <->  ( x  e.  F  /\  x #  0 ) )
282sseli 2995 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  x  e.  CC )
2928anim1i 333 . . . . . . . . . . . . 13  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
x  e.  CC  /\  x #  0 ) )
3027, 29sylbi 119 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  F  |  z #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
31 breq1 3788 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
z #  0  <->  y #  0
) )
3231elrab 2749 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e.  F  |  z #  0 }  <->  ( y  e.  F  /\  y #  0 ) )
332sseli 2995 . . . . . . . . . . . . . 14  |-  ( y  e.  F  ->  y  e.  CC )
3433anim1i 333 . . . . . . . . . . . . 13  |-  ( ( y  e.  F  /\  y #  0 )  ->  (
y  e.  CC  /\  y #  0 ) )
3532, 34sylbi 119 . . . . . . . . . . . 12  |-  ( y  e.  { z  e.  F  |  z #  0 }  ->  ( y  e.  CC  /\  y #  0 ) )
36 mulap0 7744 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  x.  y ) #  0 )
3730, 35, 36syl2an 283 . . . . . . . . . . 11  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y ) #  0 )
38 breq1 3788 . . . . . . . . . . . 12  |-  ( z  =  ( x  x.  y )  ->  (
z #  0  <->  ( x  x.  y ) #  0 ) )
3938elrab 2749 . . . . . . . . . . 11  |-  ( ( x  x.  y )  e.  { z  e.  F  |  z #  0 }  <->  ( ( x  x.  y )  e.  F  /\  ( x  x.  y ) #  0 ) )
4025, 37, 39sylanbrc 408 . . . . . . . . . 10  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y )  e.  {
z  e.  F  | 
z #  0 } )
41 1ap0 7690 . . . . . . . . . . 11  |-  1 #  0
42 breq1 3788 . . . . . . . . . . . 12  |-  ( z  =  1  ->  (
z #  0  <->  1 #  0
) )
4342elrab 2749 . . . . . . . . . . 11  |-  ( 1  e.  { z  e.  F  |  z #  0 }  <->  ( 1  e.  F  /\  1 #  0 ) )
444, 41, 43mpbir2an 883 . . . . . . . . . 10  |-  1  e.  { z  e.  F  |  z #  0 }
4522, 40, 44expcllem 9487 . . . . . . . . 9  |-  ( ( A  e.  { z  e.  F  |  z #  0 }  /\  -u B  e.  NN0 )  ->  ( A ^ -u B )  e.  { z  e.  F  |  z #  0 } )
4621, 14, 45syl2anc 403 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B )  e.  { z  e.  F  |  z #  0 } )
4717, 46sseldi 2997 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B )  e.  F )
48 breq1 3788 . . . . . . . . . 10  |-  ( z  =  ( A ^ -u B )  ->  (
z #  0  <->  ( A ^ -u B ) #  0 ) )
4948elrab 2749 . . . . . . . . 9  |-  ( ( A ^ -u B
)  e.  { z  e.  F  |  z #  0 }  <->  ( ( A ^ -u B )  e.  F  /\  ( A ^ -u B ) #  0 ) )
5046, 49sylib 120 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  (
( A ^ -u B
)  e.  F  /\  ( A ^ -u B
) #  0 ) )
5150simprd 112 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B ) #  0 )
52 breq1 3788 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
x #  0  <->  ( A ^ -u B ) #  0 ) )
53 oveq2 5540 . . . . . . . . . 10  |-  ( x  =  ( A ^ -u B )  ->  (
1  /  x )  =  ( 1  / 
( A ^ -u B
) ) )
5453eleq1d 2147 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
( 1  /  x
)  e.  F  <->  ( 1  /  ( A ^ -u B ) )  e.  F ) )
5552, 54imbi12d 232 . . . . . . . 8  |-  ( x  =  ( A ^ -u B )  ->  (
( x #  0  -> 
( 1  /  x
)  e.  F )  <-> 
( ( A ^ -u B ) #  0  -> 
( 1  /  ( A ^ -u B ) )  e.  F ) ) )
56 expcl2lemap.4 . . . . . . . . 9  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
1  /  x )  e.  F )
5756ex 113 . . . . . . . 8  |-  ( x  e.  F  ->  (
x #  0  ->  (
1  /  x )  e.  F ) )
5855, 57vtoclga 2664 . . . . . . 7  |-  ( ( A ^ -u B
)  e.  F  -> 
( ( A ^ -u B ) #  0  -> 
( 1  /  ( A ^ -u B ) )  e.  F ) )
5947, 51, 58sylc 61 . . . . . 6  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  (
1  /  ( A ^ -u B ) )  e.  F )
6016, 59eqeltrd 2155 . . . . 5  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  e.  F )
6160ex 113 . . . 4  |-  ( ( A  e.  F  /\  A #  0 )  ->  (
( B  e.  RR  /\  -u B  e.  NN )  ->  ( A ^ B )  e.  F
) )
627, 61jaod 669 . . 3  |-  ( ( A  e.  F  /\  A #  0 )  ->  (
( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  e.  F ) )
631, 62syl5bi 150 . 2  |-  ( ( A  e.  F  /\  A #  0 )  ->  ( B  e.  ZZ  ->  ( A ^ B )  e.  F ) )
64633impia 1135 1  |-  ( ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   {crab 2352    C_ wss 2973   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    x. cmul 6986   -ucneg 7280   # cap 7681    / cdiv 7760   NNcn 8039   NN0cn0 8288   ZZcz 8351   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  rpexpcl  9495  reexpclzap  9496  qexpclz  9497  m1expcl2  9498  expclzaplem  9500  1exp  9505
  Copyright terms: Public domain W3C validator