ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcllem Unicode version

Theorem expcllem 9487
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
Assertion
Ref Expression
expcllem  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
Distinct variable groups:    x, y, A   
x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcllem
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8290 . 2  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
2 oveq2 5540 . . . . . . 7  |-  ( z  =  1  ->  ( A ^ z )  =  ( A ^ 1 ) )
32eleq1d 2147 . . . . . 6  |-  ( z  =  1  ->  (
( A ^ z
)  e.  F  <->  ( A ^ 1 )  e.  F ) )
43imbi2d 228 . . . . 5  |-  ( z  =  1  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ 1 )  e.  F ) ) )
5 oveq2 5540 . . . . . . 7  |-  ( z  =  w  ->  ( A ^ z )  =  ( A ^ w
) )
65eleq1d 2147 . . . . . 6  |-  ( z  =  w  ->  (
( A ^ z
)  e.  F  <->  ( A ^ w )  e.  F ) )
76imbi2d 228 . . . . 5  |-  ( z  =  w  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ w
)  e.  F ) ) )
8 oveq2 5540 . . . . . . 7  |-  ( z  =  ( w  + 
1 )  ->  ( A ^ z )  =  ( A ^ (
w  +  1 ) ) )
98eleq1d 2147 . . . . . 6  |-  ( z  =  ( w  + 
1 )  ->  (
( A ^ z
)  e.  F  <->  ( A ^ ( w  + 
1 ) )  e.  F ) )
109imbi2d 228 . . . . 5  |-  ( z  =  ( w  + 
1 )  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ (
w  +  1 ) )  e.  F ) ) )
11 oveq2 5540 . . . . . . 7  |-  ( z  =  B  ->  ( A ^ z )  =  ( A ^ B
) )
1211eleq1d 2147 . . . . . 6  |-  ( z  =  B  ->  (
( A ^ z
)  e.  F  <->  ( A ^ B )  e.  F
) )
1312imbi2d 228 . . . . 5  |-  ( z  =  B  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ B
)  e.  F ) ) )
14 expcllem.1 . . . . . . . . 9  |-  F  C_  CC
1514sseli 2995 . . . . . . . 8  |-  ( A  e.  F  ->  A  e.  CC )
16 exp1 9482 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
1715, 16syl 14 . . . . . . 7  |-  ( A  e.  F  ->  ( A ^ 1 )  =  A )
1817eleq1d 2147 . . . . . 6  |-  ( A  e.  F  ->  (
( A ^ 1 )  e.  F  <->  A  e.  F ) )
1918ibir 175 . . . . 5  |-  ( A  e.  F  ->  ( A ^ 1 )  e.  F )
20 expcllem.2 . . . . . . . . . . . 12  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
2120caovcl 5675 . . . . . . . . . . 11  |-  ( ( ( A ^ w
)  e.  F  /\  A  e.  F )  ->  ( ( A ^
w )  x.  A
)  e.  F )
2221ancoms 264 . . . . . . . . . 10  |-  ( ( A  e.  F  /\  ( A ^ w )  e.  F )  -> 
( ( A ^
w )  x.  A
)  e.  F )
2322adantlr 460 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( ( A ^ w )  x.  A )  e.  F
)
24 nnnn0 8295 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  w  e.  NN0 )
25 expp1 9483 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  w  e.  NN0 )  -> 
( A ^ (
w  +  1 ) )  =  ( ( A ^ w )  x.  A ) )
2615, 24, 25syl2an 283 . . . . . . . . . . 11  |-  ( ( A  e.  F  /\  w  e.  NN )  ->  ( A ^ (
w  +  1 ) )  =  ( ( A ^ w )  x.  A ) )
2726eleq1d 2147 . . . . . . . . . 10  |-  ( ( A  e.  F  /\  w  e.  NN )  ->  ( ( A ^
( w  +  1 ) )  e.  F  <->  ( ( A ^ w
)  x.  A )  e.  F ) )
2827adantr 270 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( ( A ^ ( w  + 
1 ) )  e.  F  <->  ( ( A ^ w )  x.  A )  e.  F
) )
2923, 28mpbird 165 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( A ^ ( w  + 
1 ) )  e.  F )
3029exp31 356 . . . . . . 7  |-  ( A  e.  F  ->  (
w  e.  NN  ->  ( ( A ^ w
)  e.  F  -> 
( A ^ (
w  +  1 ) )  e.  F ) ) )
3130com12 30 . . . . . 6  |-  ( w  e.  NN  ->  ( A  e.  F  ->  ( ( A ^ w
)  e.  F  -> 
( A ^ (
w  +  1 ) )  e.  F ) ) )
3231a2d 26 . . . . 5  |-  ( w  e.  NN  ->  (
( A  e.  F  ->  ( A ^ w
)  e.  F )  ->  ( A  e.  F  ->  ( A ^ ( w  + 
1 ) )  e.  F ) ) )
334, 7, 10, 13, 19, 32nnind 8055 . . . 4  |-  ( B  e.  NN  ->  ( A  e.  F  ->  ( A ^ B )  e.  F ) )
3433impcom 123 . . 3  |-  ( ( A  e.  F  /\  B  e.  NN )  ->  ( A ^ B
)  e.  F )
35 oveq2 5540 . . . . 5  |-  ( B  =  0  ->  ( A ^ B )  =  ( A ^ 0 ) )
36 exp0 9480 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3715, 36syl 14 . . . . 5  |-  ( A  e.  F  ->  ( A ^ 0 )  =  1 )
3835, 37sylan9eqr 2135 . . . 4  |-  ( ( A  e.  F  /\  B  =  0 )  ->  ( A ^ B )  =  1 )
39 expcllem.3 . . . 4  |-  1  e.  F
4038, 39syl6eqel 2169 . . 3  |-  ( ( A  e.  F  /\  B  =  0 )  ->  ( A ^ B )  e.  F
)
4134, 40jaodan 743 . 2  |-  ( ( A  e.  F  /\  ( B  e.  NN  \/  B  =  0
) )  ->  ( A ^ B )  e.  F )
421, 41sylan2b 281 1  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433    C_ wss 2973  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986   NNcn 8039   NN0cn0 8288   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  expcl2lemap  9488  nnexpcl  9489  nn0expcl  9490  zexpcl  9491  qexpcl  9492  reexpcl  9493  expcl  9494  expge0  9512  expge1  9513
  Copyright terms: Public domain W3C validator