ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap GIF version

Theorem expcl2lemap 9488
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lemap.4 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lemap ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lemap
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 8365 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 9487 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 113 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 270 . . . 4 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 495 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sseldi 2997 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simplr 496 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 # 0)
11 simprl 497 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1211recnd 7147 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
13 nnnn0 8295 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1413ad2antll 474 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
15 expineg2 9485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
169, 10, 12, 14, 15syl22anc 1170 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
17 ssrab2 3079 . . . . . . . 8 {𝑧𝐹𝑧 # 0} ⊆ 𝐹
18 simpl 107 . . . . . . . . . 10 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 # 0))
19 breq1 3788 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
2019elrab 2749 . . . . . . . . . 10 (𝐴 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝐴𝐹𝐴 # 0))
2118, 20sylibr 132 . . . . . . . . 9 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ {𝑧𝐹𝑧 # 0})
2217, 2sstri 3008 . . . . . . . . . 10 {𝑧𝐹𝑧 # 0} ⊆ ℂ
2317sseli 2995 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → 𝑥𝐹)
2417sseli 2995 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → 𝑦𝐹)
2523, 24, 3syl2an 283 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ 𝐹)
26 breq1 3788 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
2726elrab 2749 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑥𝐹𝑥 # 0))
282sseli 2995 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2928anim1i 333 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 # 0) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
3027, 29sylbi 119 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
31 breq1 3788 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
3231elrab 2749 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑦𝐹𝑦 # 0))
332sseli 2995 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3433anim1i 333 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 # 0) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
3532, 34sylbi 119 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
36 mulap0 7744 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
3730, 35, 36syl2an 283 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) # 0)
38 breq1 3788 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
3938elrab 2749 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) # 0))
4025, 37, 39sylanbrc 408 . . . . . . . . . 10 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0})
41 1ap0 7690 . . . . . . . . . . 11 1 # 0
42 breq1 3788 . . . . . . . . . . . 12 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
4342elrab 2749 . . . . . . . . . . 11 (1 ∈ {𝑧𝐹𝑧 # 0} ↔ (1 ∈ 𝐹 ∧ 1 # 0))
444, 41, 43mpbir2an 883 . . . . . . . . . 10 1 ∈ {𝑧𝐹𝑧 # 0}
4522, 40, 44expcllem 9487 . . . . . . . . 9 ((𝐴 ∈ {𝑧𝐹𝑧 # 0} ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4621, 14, 45syl2anc 403 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4717, 46sseldi 2997 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
48 breq1 3788 . . . . . . . . . 10 (𝑧 = (𝐴↑-𝐵) → (𝑧 # 0 ↔ (𝐴↑-𝐵) # 0))
4948elrab 2749 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5046, 49sylib 120 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5150simprd 112 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) # 0)
52 breq1 3788 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 # 0 ↔ (𝐴↑-𝐵) # 0))
53 oveq2 5540 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
5453eleq1d 2147 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5552, 54imbi12d 232 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 # 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
56 expcl2lemap.4 . . . . . . . . 9 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
5756ex 113 . . . . . . . 8 (𝑥𝐹 → (𝑥 # 0 → (1 / 𝑥) ∈ 𝐹))
5855, 57vtoclga 2664 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5947, 51, 58sylc 61 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
6016, 59eqeltrd 2155 . . . . 5 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
6160ex 113 . . . 4 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
627, 61jaod 669 . . 3 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
631, 62syl5bi 150 . 2 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
64633impia 1135 1 ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  w3a 919   = wceq 1284  wcel 1433  {crab 2352  wss 2973   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981  1c1 6982   · cmul 6986  -cneg 7280   # cap 7681   / cdiv 7760  cn 8039  0cn0 8288  cz 8351  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  rpexpcl  9495  reexpclzap  9496  qexpclz  9497  m1expcl2  9498  expclzaplem  9500  1exp  9505
  Copyright terms: Public domain W3C validator