ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expivallem Unicode version

Theorem expivallem 9477
Description: Lemma for expival 9478. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
expivallem  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 )

Proof of Theorem expivallem
Dummy variables  k  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5198 . . . . . 6  |-  ( n  =  1  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  1 )
)
21breq1d 3795 . . . . 5  |-  ( n  =  1  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 ) #  0 ) )
32imbi2d 228 . . . 4  |-  ( n  =  1  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 ) #  0 ) ) )
4 fveq2 5198 . . . . . 6  |-  ( n  =  k  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k )
)
54breq1d 3795 . . . . 5  |-  ( n  =  k  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 ) )
65imbi2d 228 . . . 4  |-  ( n  =  k  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 ) ) )
7 fveq2 5198 . . . . . 6  |-  ( n  =  ( k  +  1 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) )
87breq1d 3795 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 ) )
98imbi2d 228 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 ) ) )
10 fveq2 5198 . . . . . 6  |-  ( n  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )
)
1110breq1d 3795 . . . . 5  |-  ( n  =  N  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  n
) #  0  <->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 ) )
1211imbi2d 228 . . . 4  |-  ( n  =  N  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  n ) #  0 )  <->  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 ) ) )
13 simpr 108 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A #  0 )
14 1zzd 8378 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0 )  ->  1  e.  ZZ )
15 cnex 7097 . . . . . . . . 9  |-  CC  e.  _V
1615a1i 9 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0 )  ->  CC  e.  _V )
17 elnnuz 8655 . . . . . . . . . . 11  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
18 fvconst2g 5396 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
1917, 18sylan2br 282 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  =  A )
2019adantlr 460 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  =  A )
21 simpll 495 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  ->  A  e.  CC )
2220, 21eqeltrd 2155 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  e.  CC )
23 mulcl 7100 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2423adantl 271 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
2514, 16, 22, 24iseq1 9442 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 )  =  ( ( NN 
X.  { A }
) `  1 )
)
26 1nn 8050 . . . . . . . . 9  |-  1  e.  NN
27 fvconst2g 5396 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  NN )  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
2826, 27mpan2 415 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( NN  X.  { A } ) `  1
)  =  A )
2928adantr 270 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( NN  X.  { A } ) `  1
)  =  A )
3025, 29eqtrd 2113 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 )  =  A )
3130breq1d 3795 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  1
) #  0  <->  A #  0
) )
3213, 31mpbird 165 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  1 ) #  0 )
33 simpl 107 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  k  e.  NN )
34 elnnuz 8655 . . . . . . . . . . 11  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
3533, 34sylib 120 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  k  e.  (
ZZ>= `  1 ) )
3635adantr 270 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  k  e.  ( ZZ>= `  1 )
)
3715a1i 9 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  CC  e.  _V )
3822adantll 459 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  x )  e.  CC )
3938adantlr 460 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k
) #  0 )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  x )  e.  CC )
4023adantl 271 . . . . . . . . 9  |-  ( ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k
) #  0 )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
4136, 37, 39, 40iseqcl 9443 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  e.  CC )
42 simplrl 501 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  A  e.  CC )
43 simpr 108 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 )
44 simplrr 502 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  A #  0 )
4541, 42, 43, 44mulap0d 7748 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k
)  x.  A ) #  0 )
4615a1i 9 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  CC  e.  _V )
4723adantl 271 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
4835, 46, 38, 47iseqp1 9445 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  ( ( NN  X.  { A } ) `  ( k  +  1 ) ) ) )
49 simprl 497 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  A  e.  CC )
5033peano2nnd 8054 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( k  +  1 )  e.  NN )
51 fvconst2g 5396 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( k  +  1 ) )  =  A )
5249, 50, 51syl2anc 403 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( ( NN 
X.  { A }
) `  ( k  +  1 ) )  =  A )
5352oveq2d 5548 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  ( ( NN  X.  { A } ) `  ( k  +  1 ) ) )  =  ( (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) )
5448, 53eqtrd 2113 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) )  =  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) )
5554breq1d 3795 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0  <->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) #  0 ) )
5655adantr 270 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  (
k  +  1 ) ) #  0  <->  ( (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k )  x.  A ) #  0 ) )
5745, 56mpbird 165 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( A  e.  CC  /\  A #  0 ) )  /\  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 )
5857exp31 356 . . . . 5  |-  ( k  e.  NN  ->  (
( A  e.  CC  /\  A #  0 )  -> 
( (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  k ) #  0  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  ( k  +  1 ) ) #  0 ) ) )
5958a2d 26 . . . 4  |-  ( k  e.  NN  ->  (
( ( A  e.  CC  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  k ) #  0 )  ->  (
( A  e.  CC  /\  A #  0 )  -> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  (
k  +  1 ) ) #  0 ) ) )
603, 6, 9, 12, 32, 59nnind 8055 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  CC  /\  A #  0 )  -> 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) #  0 ) )
6160impcom 123 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ,  CC ) `
 N ) #  0 )
62613impa 1133 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   _Vcvv 2601   {csn 3398   class class class wbr 3785    X. cxp 4361   ` cfv 4922  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986   # cap 7681   NNcn 8039   ZZ>=cuz 8619    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  expival  9478
  Copyright terms: Public domain W3C validator