| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oiso2 | Unicode version | ||
| Description: Any one-to-one onto
function determines an isomorphism with an induced
relation |
| Ref | Expression |
|---|---|
| f1oiso2.1 |
|
| Ref | Expression |
|---|---|
| f1oiso2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oiso2.1 |
. . 3
| |
| 2 | f1ocnvdm 5441 |
. . . . . . . . 9
| |
| 3 | 2 | adantrr 462 |
. . . . . . . 8
|
| 4 | 3 | 3adant3 958 |
. . . . . . 7
|
| 5 | f1ocnvdm 5441 |
. . . . . . . . . 10
| |
| 6 | 5 | adantrl 461 |
. . . . . . . . 9
|
| 7 | 6 | 3adant3 958 |
. . . . . . . 8
|
| 8 | f1ocnvfv2 5438 |
. . . . . . . . . . 11
| |
| 9 | 8 | eqcomd 2086 |
. . . . . . . . . 10
|
| 10 | f1ocnvfv2 5438 |
. . . . . . . . . . 11
| |
| 11 | 10 | eqcomd 2086 |
. . . . . . . . . 10
|
| 12 | 9, 11 | anim12dan 564 |
. . . . . . . . 9
|
| 13 | 12 | 3adant3 958 |
. . . . . . . 8
|
| 14 | simp3 940 |
. . . . . . . 8
| |
| 15 | fveq2 5198 |
. . . . . . . . . . . 12
| |
| 16 | 15 | eqeq2d 2092 |
. . . . . . . . . . 11
|
| 17 | 16 | anbi2d 451 |
. . . . . . . . . 10
|
| 18 | breq2 3789 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | anbi12d 456 |
. . . . . . . . 9
|
| 20 | 19 | rspcev 2701 |
. . . . . . . 8
|
| 21 | 7, 13, 14, 20 | syl12anc 1167 |
. . . . . . 7
|
| 22 | fveq2 5198 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eqeq2d 2092 |
. . . . . . . . . . 11
|
| 24 | 23 | anbi1d 452 |
. . . . . . . . . 10
|
| 25 | breq1 3788 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | anbi12d 456 |
. . . . . . . . 9
|
| 27 | 26 | rexbidv 2369 |
. . . . . . . 8
|
| 28 | 27 | rspcev 2701 |
. . . . . . 7
|
| 29 | 4, 21, 28 | syl2anc 403 |
. . . . . 6
|
| 30 | 29 | 3expib 1141 |
. . . . 5
|
| 31 | simp3ll 1009 |
. . . . . . . . 9
| |
| 32 | simp1 938 |
. . . . . . . . . 10
| |
| 33 | simp2l 964 |
. . . . . . . . . 10
| |
| 34 | f1of 5146 |
. . . . . . . . . . 11
| |
| 35 | 34 | ffvelrnda 5323 |
. . . . . . . . . 10
|
| 36 | 32, 33, 35 | syl2anc 403 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2155 |
. . . . . . . 8
|
| 38 | simp3lr 1010 |
. . . . . . . . 9
| |
| 39 | simp2r 965 |
. . . . . . . . . 10
| |
| 40 | 34 | ffvelrnda 5323 |
. . . . . . . . . 10
|
| 41 | 32, 39, 40 | syl2anc 403 |
. . . . . . . . 9
|
| 42 | 38, 41 | eqeltrd 2155 |
. . . . . . . 8
|
| 43 | simp3r 967 |
. . . . . . . . 9
| |
| 44 | 31 | eqcomd 2086 |
. . . . . . . . . 10
|
| 45 | f1ocnvfv 5439 |
. . . . . . . . . . 11
| |
| 46 | 32, 33, 45 | syl2anc 403 |
. . . . . . . . . 10
|
| 47 | 44, 46 | mpd 13 |
. . . . . . . . 9
|
| 48 | 38 | eqcomd 2086 |
. . . . . . . . . 10
|
| 49 | f1ocnvfv 5439 |
. . . . . . . . . . 11
| |
| 50 | 32, 39, 49 | syl2anc 403 |
. . . . . . . . . 10
|
| 51 | 48, 50 | mpd 13 |
. . . . . . . . 9
|
| 52 | 43, 47, 51 | 3brtr4d 3815 |
. . . . . . . 8
|
| 53 | 37, 42, 52 | jca31 302 |
. . . . . . 7
|
| 54 | 53 | 3exp 1137 |
. . . . . 6
|
| 55 | 54 | rexlimdvv 2483 |
. . . . 5
|
| 56 | 30, 55 | impbid 127 |
. . . 4
|
| 57 | 56 | opabbidv 3844 |
. . 3
|
| 58 | 1, 57 | syl5eq 2125 |
. 2
|
| 59 | f1oiso 5485 |
. 2
| |
| 60 | 58, 59 | mpdan 412 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |