![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr4d | Unicode version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
3brtr4d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr4d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr4d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3brtr4d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3brtr4d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3brtr4d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | breq12d 3798 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbird 165 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 |
This theorem is referenced by: f1oiso2 5486 prarloclemarch2 6609 caucvgprprlemmu 6885 caucvgsrlembound 6970 mulap0 7744 lediv12a 7972 recp1lt1 7977 fldiv4p1lem1div2 9307 intfracq 9322 modqmulnn 9344 addmodlteq 9400 frecfzennn 9419 monoord2 9456 expgt1 9514 leexp2r 9530 leexp1a 9531 bernneq 9593 faclbnd 9668 faclbnd6 9671 facubnd 9672 sqrtgt0 9920 absrele 9969 absimle 9970 abstri 9990 abs2difabs 9994 climsqz 10173 climsqz2 10174 |
Copyright terms: Public domain | W3C validator |