![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp2l | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant2 960 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: simpl2l 991 simpr2l 997 simp12l 1051 simp22l 1057 simp32l 1063 issod 4074 funprg 4969 fsnunf 5383 f1oiso2 5486 ecopovtrn 6226 ecopovtrng 6229 addassnqg 6572 ltsonq 6588 ltanqg 6590 ltmnqg 6591 addassnq0 6652 recexprlem1ssu 6824 mulasssrg 6935 distrsrg 6936 lttrsr 6939 ltsosr 6941 ltasrg 6947 mulextsr1lem 6956 mulextsr1 6957 axmulass 7039 axdistr 7040 dmdcanap 7810 ltdiv2 7965 lediv2 7969 ltdiv23 7970 lediv23 7971 expaddzaplem 9519 expaddzap 9520 expmulzap 9522 expdivap 9527 prmexpb 10530 |
Copyright terms: Public domain | W3C validator |