| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ompt | Unicode version | ||
| Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| fmpt.1 |
|
| Ref | Expression |
|---|---|
| f1ompt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5066 |
. . . . 5
| |
| 2 | dff1o4 5154 |
. . . . . 6
| |
| 3 | 2 | baib 861 |
. . . . 5
|
| 4 | 1, 3 | syl 14 |
. . . 4
|
| 5 | fnres 5035 |
. . . . . 6
| |
| 6 | nfcv 2219 |
. . . . . . . . . 10
| |
| 7 | fmpt.1 |
. . . . . . . . . . 11
| |
| 8 | nfmpt1 3871 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | nfcxfr 2216 |
. . . . . . . . . 10
|
| 10 | nfcv 2219 |
. . . . . . . . . 10
| |
| 11 | 6, 9, 10 | nfbr 3829 |
. . . . . . . . 9
|
| 12 | nfv 1461 |
. . . . . . . . 9
| |
| 13 | breq1 3788 |
. . . . . . . . . 10
| |
| 14 | df-mpt 3841 |
. . . . . . . . . . . . 13
| |
| 15 | 7, 14 | eqtri 2101 |
. . . . . . . . . . . 12
|
| 16 | 15 | breqi 3791 |
. . . . . . . . . . 11
|
| 17 | df-br 3786 |
. . . . . . . . . . . 12
| |
| 18 | opabid 4012 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | bitri 182 |
. . . . . . . . . . 11
|
| 20 | 16, 19 | bitri 182 |
. . . . . . . . . 10
|
| 21 | 13, 20 | syl6bb 194 |
. . . . . . . . 9
|
| 22 | 11, 12, 21 | cbveu 1965 |
. . . . . . . 8
|
| 23 | vex 2604 |
. . . . . . . . . 10
| |
| 24 | vex 2604 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | brcnv 4536 |
. . . . . . . . 9
|
| 26 | 25 | eubii 1950 |
. . . . . . . 8
|
| 27 | df-reu 2355 |
. . . . . . . 8
| |
| 28 | 22, 26, 27 | 3bitr4i 210 |
. . . . . . 7
|
| 29 | 28 | ralbii 2372 |
. . . . . 6
|
| 30 | 5, 29 | bitri 182 |
. . . . 5
|
| 31 | relcnv 4723 |
. . . . . . 7
| |
| 32 | df-rn 4374 |
. . . . . . . 8
| |
| 33 | frn 5072 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl5eqssr 3044 |
. . . . . . 7
|
| 35 | relssres 4666 |
. . . . . . 7
| |
| 36 | 31, 34, 35 | sylancr 405 |
. . . . . 6
|
| 37 | 36 | fneq1d 5009 |
. . . . 5
|
| 38 | 30, 37 | syl5bbr 192 |
. . . 4
|
| 39 | 4, 38 | bitr4d 189 |
. . 3
|
| 40 | 39 | pm5.32i 441 |
. 2
|
| 41 | f1of 5146 |
. . 3
| |
| 42 | 41 | pm4.71ri 384 |
. 2
|
| 43 | 7 | fmpt 5340 |
. . 3
|
| 44 | 43 | anbi1i 445 |
. 2
|
| 45 | 40, 42, 44 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 |
| This theorem is referenced by: icoshftf1o 9013 |
| Copyright terms: Public domain | W3C validator |