ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ompt Unicode version

Theorem f1ompt 5341
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
Assertion
Ref Expression
f1ompt  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    y, F
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem f1ompt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ffn 5066 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
2 dff1o4 5154 . . . . . 6  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
32baib 861 . . . . 5  |-  ( F  Fn  A  ->  ( F : A -1-1-onto-> B  <->  `' F  Fn  B
) )
41, 3syl 14 . . . 4  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  `' F  Fn  B ) )
5 fnres 5035 . . . . . 6  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! z 
y `' F z )
6 nfcv 2219 . . . . . . . . . 10  |-  F/_ x
z
7 fmpt.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  A  |->  C )
8 nfmpt1 3871 . . . . . . . . . . 11  |-  F/_ x
( x  e.  A  |->  C )
97, 8nfcxfr 2216 . . . . . . . . . 10  |-  F/_ x F
10 nfcv 2219 . . . . . . . . . 10  |-  F/_ x
y
116, 9, 10nfbr 3829 . . . . . . . . 9  |-  F/ x  z F y
12 nfv 1461 . . . . . . . . 9  |-  F/ z ( x  e.  A  /\  y  =  C
)
13 breq1 3788 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z F y  <->  x F
y ) )
14 df-mpt 3841 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
157, 14eqtri 2101 . . . . . . . . . . . 12  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
1615breqi 3791 . . . . . . . . . . 11  |-  ( x F y  <->  x { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) } y )
17 df-br 3786 . . . . . . . . . . . 12  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } )
18 opabid 4012 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  <->  ( x  e.  A  /\  y  =  C ) )
1917, 18bitri 182 . . . . . . . . . . 11  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <-> 
( x  e.  A  /\  y  =  C
) )
2016, 19bitri 182 . . . . . . . . . 10  |-  ( x F y  <->  ( x  e.  A  /\  y  =  C ) )
2113, 20syl6bb 194 . . . . . . . . 9  |-  ( z  =  x  ->  (
z F y  <->  ( x  e.  A  /\  y  =  C ) ) )
2211, 12, 21cbveu 1965 . . . . . . . 8  |-  ( E! z  z F y  <-> 
E! x ( x  e.  A  /\  y  =  C ) )
23 vex 2604 . . . . . . . . . 10  |-  y  e. 
_V
24 vex 2604 . . . . . . . . . 10  |-  z  e. 
_V
2523, 24brcnv 4536 . . . . . . . . 9  |-  ( y `' F z  <->  z F
y )
2625eubii 1950 . . . . . . . 8  |-  ( E! z  y `' F
z  <->  E! z  z F y )
27 df-reu 2355 . . . . . . . 8  |-  ( E! x  e.  A  y  =  C  <->  E! x
( x  e.  A  /\  y  =  C
) )
2822, 26, 273bitr4i 210 . . . . . . 7  |-  ( E! z  y `' F
z  <->  E! x  e.  A  y  =  C )
2928ralbii 2372 . . . . . 6  |-  ( A. y  e.  B  E! z  y `' F
z  <->  A. y  e.  B  E! x  e.  A  y  =  C )
305, 29bitri 182 . . . . 5  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! x  e.  A  y  =  C )
31 relcnv 4723 . . . . . . 7  |-  Rel  `' F
32 df-rn 4374 . . . . . . . 8  |-  ran  F  =  dom  `' F
33 frn 5072 . . . . . . . 8  |-  ( F : A --> B  ->  ran  F  C_  B )
3432, 33syl5eqssr 3044 . . . . . . 7  |-  ( F : A --> B  ->  dom  `' F  C_  B )
35 relssres 4666 . . . . . . 7  |-  ( ( Rel  `' F  /\  dom  `' F  C_  B )  ->  ( `' F  |`  B )  =  `' F )
3631, 34, 35sylancr 405 . . . . . 6  |-  ( F : A --> B  -> 
( `' F  |`  B )  =  `' F )
3736fneq1d 5009 . . . . 5  |-  ( F : A --> B  -> 
( ( `' F  |`  B )  Fn  B  <->  `' F  Fn  B ) )
3830, 37syl5bbr 192 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E! x  e.  A  y  =  C  <->  `' F  Fn  B
) )
394, 38bitr4d 189 . . 3  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  A. y  e.  B  E! x  e.  A  y  =  C ) )
4039pm5.32i 441 . 2  |-  ( ( F : A --> B  /\  F : A -1-1-onto-> B )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
41 f1of 5146 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
4241pm4.71ri 384 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A
--> B  /\  F : A
-1-1-onto-> B ) )
437fmpt 5340 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
4443anbi1i 445 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
4540, 42, 443bitr4i 210 1  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E!weu 1941   A.wral 2348   E!wreu 2350    C_ wss 2973   <.cop 3401   class class class wbr 3785   {copab 3838    |-> cmpt 3839   `'ccnv 4362   dom cdm 4363   ran crn 4364    |` cres 4365   Rel wrel 4368    Fn wfn 4917   -->wf 4918   -1-1-onto->wf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930
This theorem is referenced by:  icoshftf1o  9013
  Copyright terms: Public domain W3C validator