| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > icoshftf1o | Unicode version | ||
| Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| icoshftf1o.1 |
|
| Ref | Expression |
|---|---|
| icoshftf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoshft 9012 |
. . 3
| |
| 2 | 1 | ralrimiv 2433 |
. 2
|
| 3 | readdcl 7099 |
. . . . . . . . 9
| |
| 4 | 3 | 3adant2 957 |
. . . . . . . 8
|
| 5 | readdcl 7099 |
. . . . . . . . 9
| |
| 6 | 5 | 3adant1 956 |
. . . . . . . 8
|
| 7 | renegcl 7369 |
. . . . . . . . 9
| |
| 8 | 7 | 3ad2ant3 961 |
. . . . . . . 8
|
| 9 | icoshft 9012 |
. . . . . . . 8
| |
| 10 | 4, 6, 8, 9 | syl3anc 1169 |
. . . . . . 7
|
| 11 | 10 | imp 122 |
. . . . . 6
|
| 12 | 6 | rexrd 7168 |
. . . . . . . . . 10
|
| 13 | icossre 8977 |
. . . . . . . . . 10
| |
| 14 | 4, 12, 13 | syl2anc 403 |
. . . . . . . . 9
|
| 15 | 14 | sselda 2999 |
. . . . . . . 8
|
| 16 | 15 | recnd 7147 |
. . . . . . 7
|
| 17 | simpl3 943 |
. . . . . . . 8
| |
| 18 | 17 | recnd 7147 |
. . . . . . 7
|
| 19 | 16, 18 | negsubd 7425 |
. . . . . 6
|
| 20 | 4 | recnd 7147 |
. . . . . . . . . 10
|
| 21 | simp3 940 |
. . . . . . . . . . 11
| |
| 22 | 21 | recnd 7147 |
. . . . . . . . . 10
|
| 23 | 20, 22 | negsubd 7425 |
. . . . . . . . 9
|
| 24 | simp1 938 |
. . . . . . . . . . 11
| |
| 25 | 24 | recnd 7147 |
. . . . . . . . . 10
|
| 26 | 25, 22 | pncand 7420 |
. . . . . . . . 9
|
| 27 | 23, 26 | eqtrd 2113 |
. . . . . . . 8
|
| 28 | 6 | recnd 7147 |
. . . . . . . . . 10
|
| 29 | 28, 22 | negsubd 7425 |
. . . . . . . . 9
|
| 30 | simp2 939 |
. . . . . . . . . . 11
| |
| 31 | 30 | recnd 7147 |
. . . . . . . . . 10
|
| 32 | 31, 22 | pncand 7420 |
. . . . . . . . 9
|
| 33 | 29, 32 | eqtrd 2113 |
. . . . . . . 8
|
| 34 | 27, 33 | oveq12d 5550 |
. . . . . . 7
|
| 35 | 34 | adantr 270 |
. . . . . 6
|
| 36 | 11, 19, 35 | 3eltr3d 2161 |
. . . . 5
|
| 37 | reueq 2789 |
. . . . 5
| |
| 38 | 36, 37 | sylib 120 |
. . . 4
|
| 39 | 15 | adantr 270 |
. . . . . . . 8
|
| 40 | 39 | recnd 7147 |
. . . . . . 7
|
| 41 | simpll3 979 |
. . . . . . . 8
| |
| 42 | 41 | recnd 7147 |
. . . . . . 7
|
| 43 | simpl1 941 |
. . . . . . . . . 10
| |
| 44 | simpl2 942 |
. . . . . . . . . . 11
| |
| 45 | 44 | rexrd 7168 |
. . . . . . . . . 10
|
| 46 | icossre 8977 |
. . . . . . . . . 10
| |
| 47 | 43, 45, 46 | syl2anc 403 |
. . . . . . . . 9
|
| 48 | 47 | sselda 2999 |
. . . . . . . 8
|
| 49 | 48 | recnd 7147 |
. . . . . . 7
|
| 50 | 40, 42, 49 | subadd2d 7438 |
. . . . . 6
|
| 51 | eqcom 2083 |
. . . . . 6
| |
| 52 | eqcom 2083 |
. . . . . 6
| |
| 53 | 50, 51, 52 | 3bitr4g 221 |
. . . . 5
|
| 54 | 53 | reubidva 2536 |
. . . 4
|
| 55 | 38, 54 | mpbid 145 |
. . 3
|
| 56 | 55 | ralrimiva 2434 |
. 2
|
| 57 | icoshftf1o.1 |
. . 3
| |
| 58 | 57 | f1ompt 5341 |
. 2
|
| 59 | 2, 56, 58 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-ico 8917 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |