ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand Unicode version

Theorem frec2uzrand 9407
Description: Range of  G (see frec2uz0d 9401). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzrand  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzrand
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2  |-  ( ph  ->  C  e.  ZZ )
2 zex 8360 . . . . . . . . . . 11  |-  ZZ  e.  _V
32mptex 5408 . . . . . . . . . 10  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
4 vex 2604 . . . . . . . . . 10  |-  z  e. 
_V
53, 4fvex 5215 . . . . . . . . 9  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
65ax-gen 1378 . . . . . . . 8  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
7 frecfnom 6009 . . . . . . . 8  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
86, 7mpan 414 . . . . . . 7  |-  ( C  e.  ZZ  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5013 . . . . . . 7  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 132 . . . . . 6  |-  ( C  e.  ZZ  ->  G  Fn  om )
12 fvelrnb 5242 . . . . . 6  |-  ( G  Fn  om  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
1311, 12syl 14 . . . . 5  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
14 simpl 107 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  C  e.  ZZ )
15 simpr 108 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  z  e.  om )
1614, 9, 15frec2uzuzd 9404 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  z
)  e.  ( ZZ>= `  C ) )
17 eleq1 2141 . . . . . . 7  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  e.  ( ZZ>= `  C )  <->  y  e.  ( ZZ>= `  C )
) )
1816, 17syl5ibcom 153 . . . . . 6  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  y  e.  (
ZZ>= `  C ) ) )
1918rexlimdva 2477 . . . . 5  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  y  e.  ( ZZ>= `  C )
) )
2013, 19sylbid 148 . . . 4  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  y  e.  ( ZZ>= `  C ) ) )
21 eleq1 2141 . . . . 5  |-  ( w  =  C  ->  (
w  e.  ran  G  <->  C  e.  ran  G ) )
22 eleq1 2141 . . . . 5  |-  ( w  =  y  ->  (
w  e.  ran  G  <->  y  e.  ran  G ) )
23 eleq1 2141 . . . . 5  |-  ( w  =  ( y  +  1 )  ->  (
w  e.  ran  G  <->  ( y  +  1 )  e.  ran  G ) )
24 id 19 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  ZZ )
2524, 9frec2uz0d 9401 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  =  C )
26 peano1 4335 . . . . . . 7  |-  (/)  e.  om
27 fnfvelrn 5320 . . . . . . 7  |-  ( ( G  Fn  om  /\  (/) 
e.  om )  ->  ( G `  (/) )  e. 
ran  G )
2811, 26, 27sylancl 404 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  e. 
ran  G )
2925, 28eqeltrrd 2156 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  ran  G )
30 eluzel2 8624 . . . . . 6  |-  ( y  e.  ( ZZ>= `  C
)  ->  C  e.  ZZ )
3114, 9, 15frec2uzsucd 9403 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  =  ( ( G `  z
)  +  1 ) )
32 oveq1 5539 . . . . . . . . . . 11  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  +  1 )  =  ( y  +  1 ) )
3331, 32sylan9eq 2133 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  =  ( y  +  1 ) )
34 peano2 4336 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  suc  z  e.  om )
35 fnfvelrn 5320 . . . . . . . . . . . 12  |-  ( ( G  Fn  om  /\  suc  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3611, 34, 35syl2an 283 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3736adantr 270 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  e.  ran  G )
3833, 37eqeltrrd 2156 . . . . . . . . 9  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( y  +  1 )  e.  ran  G )
3938ex 113 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  ( y  +  1 )  e.  ran  G ) )
4039rexlimdva 2477 . . . . . . 7  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  (
y  +  1 )  e.  ran  G ) )
4113, 40sylbid 148 . . . . . 6  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  ( y  +  1 )  e.  ran  G
) )
4230, 41syl 14 . . . . 5  |-  ( y  e.  ( ZZ>= `  C
)  ->  ( y  e.  ran  G  ->  (
y  +  1 )  e.  ran  G ) )
4321, 22, 23, 22, 29, 42uzind4 8676 . . . 4  |-  ( y  e.  ( ZZ>= `  C
)  ->  y  e.  ran  G )
4420, 43impbid1 140 . . 3  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  y  e.  ( ZZ>= `  C
) ) )
4544eqrdv 2079 . 2  |-  ( C  e.  ZZ  ->  ran  G  =  ( ZZ>= `  C
) )
461, 45syl 14 1  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   E.wrex 2349   _Vcvv 2601   (/)c0 3251    |-> cmpt 3839   suc csuc 4120   omcom 4331   ran crn 4364    Fn wfn 4917   ` cfv 4922  (class class class)co 5532  freccfrec 6000   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frec2uzf1od  9408
  Copyright terms: Public domain W3C validator