ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 Unicode version

Theorem fsn2 5358
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1  |-  A  e. 
_V
Assertion
Ref Expression
fsn2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5066 . . 3  |-  ( F : { A } --> B  ->  F  Fn  { A } )
2 fsn2.1 . . . . 5  |-  A  e. 
_V
32snid 3425 . . . 4  |-  A  e. 
{ A }
4 funfvex 5212 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
54funfni 5019 . . . 4  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  ( F `  A )  e.  _V )
63, 5mpan2 415 . . 3  |-  ( F  Fn  { A }  ->  ( F `  A
)  e.  _V )
71, 6syl 14 . 2  |-  ( F : { A } --> B  ->  ( F `  A )  e.  _V )
8 elex 2610 . . 3  |-  ( ( F `  A )  e.  B  ->  ( F `  A )  e.  _V )
98adantr 270 . 2  |-  ( ( ( F `  A
)  e.  B  /\  F  =  { <. A , 
( F `  A
) >. } )  -> 
( F `  A
)  e.  _V )
10 ffvelrn 5321 . . . . . 6  |-  ( ( F : { A }
--> B  /\  A  e. 
{ A } )  ->  ( F `  A )  e.  B
)
113, 10mpan2 415 . . . . 5  |-  ( F : { A } --> B  ->  ( F `  A )  e.  B
)
12 dffn3 5073 . . . . . . . 8  |-  ( F  Fn  { A }  <->  F : { A } --> ran  F )
1312biimpi 118 . . . . . . 7  |-  ( F  Fn  { A }  ->  F : { A }
--> ran  F )
14 imadmrn 4698 . . . . . . . . . 10  |-  ( F
" dom  F )  =  ran  F
15 fndm 5018 . . . . . . . . . . 11  |-  ( F  Fn  { A }  ->  dom  F  =  { A } )
1615imaeq2d 4688 . . . . . . . . . 10  |-  ( F  Fn  { A }  ->  ( F " dom  F )  =  ( F
" { A }
) )
1714, 16syl5eqr 2127 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  ran  F  =  ( F " { A } ) )
18 fnsnfv 5253 . . . . . . . . . 10  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  { ( F `  A ) }  =  ( F
" { A }
) )
193, 18mpan2 415 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  { ( F `  A ) }  =  ( F " { A } ) )
2017, 19eqtr4d 2116 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ran  F  =  {
( F `  A
) } )
21 feq3 5052 . . . . . . . 8  |-  ( ran 
F  =  { ( F `  A ) }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2220, 21syl 14 . . . . . . 7  |-  ( F  Fn  { A }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2313, 22mpbid 145 . . . . . 6  |-  ( F  Fn  { A }  ->  F : { A }
--> { ( F `  A ) } )
241, 23syl 14 . . . . 5  |-  ( F : { A } --> B  ->  F : { A } --> { ( F `
 A ) } )
2511, 24jca 300 . . . 4  |-  ( F : { A } --> B  ->  ( ( F `
 A )  e.  B  /\  F : { A } --> { ( F `  A ) } ) )
26 snssi 3529 . . . . 5  |-  ( ( F `  A )  e.  B  ->  { ( F `  A ) }  C_  B )
27 fss 5074 . . . . . 6  |-  ( ( F : { A }
--> { ( F `  A ) }  /\  { ( F `  A
) }  C_  B
)  ->  F : { A } --> B )
2827ancoms 264 . . . . 5  |-  ( ( { ( F `  A ) }  C_  B  /\  F : { A } --> { ( F `
 A ) } )  ->  F : { A } --> B )
2926, 28sylan 277 . . . 4  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  ->  F : { A } --> B )
3025, 29impbii 124 . . 3  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } ) )
31 fsng 5357 . . . . 5  |-  ( ( A  e.  _V  /\  ( F `  A )  e.  _V )  -> 
( F : { A } --> { ( F `
 A ) }  <-> 
F  =  { <. A ,  ( F `  A ) >. } ) )
322, 31mpan 414 . . . 4  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> { ( F `  A ) }  <->  F  =  { <. A ,  ( F `  A )
>. } ) )
3332anbi2d 451 . . 3  |-  ( ( F `  A )  e.  _V  ->  (
( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } )  <-> 
( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
3430, 33syl5bb 190 . 2  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
357, 9, 34pm5.21nii 652 1  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601    C_ wss 2973   {csn 3398   <.cop 3401   dom cdm 4363   ran crn 4364   "cima 4366    Fn wfn 4917   -->wf 4918   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930
This theorem is referenced by:  fnressn  5370  fressnfv  5371  en1  6302
  Copyright terms: Public domain W3C validator