| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn2 | Unicode version | ||
| Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
| Ref | Expression |
|---|---|
| fsn2.1 |
|
| Ref | Expression |
|---|---|
| fsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5066 |
. . 3
| |
| 2 | fsn2.1 |
. . . . 5
| |
| 3 | 2 | snid 3425 |
. . . 4
|
| 4 | funfvex 5212 |
. . . . 5
| |
| 5 | 4 | funfni 5019 |
. . . 4
|
| 6 | 3, 5 | mpan2 415 |
. . 3
|
| 7 | 1, 6 | syl 14 |
. 2
|
| 8 | elex 2610 |
. . 3
| |
| 9 | 8 | adantr 270 |
. 2
|
| 10 | ffvelrn 5321 |
. . . . . 6
| |
| 11 | 3, 10 | mpan2 415 |
. . . . 5
|
| 12 | dffn3 5073 |
. . . . . . . 8
| |
| 13 | 12 | biimpi 118 |
. . . . . . 7
|
| 14 | imadmrn 4698 |
. . . . . . . . . 10
| |
| 15 | fndm 5018 |
. . . . . . . . . . 11
| |
| 16 | 15 | imaeq2d 4688 |
. . . . . . . . . 10
|
| 17 | 14, 16 | syl5eqr 2127 |
. . . . . . . . 9
|
| 18 | fnsnfv 5253 |
. . . . . . . . . 10
| |
| 19 | 3, 18 | mpan2 415 |
. . . . . . . . 9
|
| 20 | 17, 19 | eqtr4d 2116 |
. . . . . . . 8
|
| 21 | feq3 5052 |
. . . . . . . 8
| |
| 22 | 20, 21 | syl 14 |
. . . . . . 7
|
| 23 | 13, 22 | mpbid 145 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 11, 24 | jca 300 |
. . . 4
|
| 26 | snssi 3529 |
. . . . 5
| |
| 27 | fss 5074 |
. . . . . 6
| |
| 28 | 27 | ancoms 264 |
. . . . 5
|
| 29 | 26, 28 | sylan 277 |
. . . 4
|
| 30 | 25, 29 | impbii 124 |
. . 3
|
| 31 | fsng 5357 |
. . . . 5
| |
| 32 | 2, 31 | mpan 414 |
. . . 4
|
| 33 | 32 | anbi2d 451 |
. . 3
|
| 34 | 30, 33 | syl5bb 190 |
. 2
|
| 35 | 7, 9, 34 | pm5.21nii 652 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 |
| This theorem is referenced by: fnressn 5370 fressnfv 5371 en1 6302 |
| Copyright terms: Public domain | W3C validator |