ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadmrn Unicode version

Theorem imadmrn 4698
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn  |-  ( A
" dom  A )  =  ran  A

Proof of Theorem imadmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . . . . 7  |-  x  e. 
_V
2 vex 2604 . . . . . . 7  |-  y  e. 
_V
31, 2opeldm 4556 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
43pm4.71i 383 . . . . 5  |-  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  /\  x  e.  dom  A ) )
5 ancom 262 . . . . 5  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  dom  A )  <->  ( x  e.  dom  A  /\  <. x ,  y >.  e.  A
) )
64, 5bitr2i 183 . . . 4  |-  ( ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A )  <->  <. x ,  y >.  e.  A
)
76exbii 1536 . . 3  |-  ( E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
)  <->  E. x <. x ,  y >.  e.  A
)
87abbii 2194 . 2  |-  { y  |  E. x ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A ) }  =  { y  |  E. x <. x ,  y >.  e.  A }
9 dfima3 4691 . 2  |-  ( A
" dom  A )  =  { y  |  E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
) }
10 dfrn3 4542 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
118, 9, 103eqtr4i 2111 1  |-  ( A
" dom  A )  =  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   <.cop 3401   dom cdm 4363   ran crn 4364   "cima 4366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by:  cnvimarndm  4709  foima  5131  f1imacnv  5163  fsn2  5358  resfunexg  5403  funiunfvdm  5423  fnexALT  5760  uniqs2  6189  phplem4  6341  phplem4on  6353
  Copyright terms: Public domain W3C validator