ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 Unicode version

Theorem en1 6302
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Distinct variable group:    x, A

Proof of Theorem en1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df1o2 6036 . . . . 5  |-  1o  =  { (/) }
21breq2i 3793 . . . 4  |-  ( A 
~~  1o  <->  A  ~~  { (/) } )
3 bren 6251 . . . 4  |-  ( A 
~~  { (/) }  <->  E. f 
f : A -1-1-onto-> { (/) } )
42, 3bitri 182 . . 3  |-  ( A 
~~  1o  <->  E. f  f : A -1-1-onto-> { (/) } )
5 f1ocnv 5159 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  `' f : { (/) } -1-1-onto-> A )
6 f1ofo 5153 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } -onto-> A )
7 forn 5129 . . . . . . . 8  |-  ( `' f : { (/) }
-onto-> A  ->  ran  `' f  =  A )
86, 7syl 14 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  A )
9 f1of 5146 . . . . . . . . . 10  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } --> A )
10 0ex 3905 . . . . . . . . . . . 12  |-  (/)  e.  _V
1110fsn2 5358 . . . . . . . . . . 11  |-  ( `' f : { (/) } --> A  <->  ( ( `' f `  (/) )  e.  A  /\  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } ) )
1211simprbi 269 . . . . . . . . . 10  |-  ( `' f : { (/) } --> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
139, 12syl 14 . . . . . . . . 9  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
1413rneqd 4581 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  ran  { <. (/) ,  ( `' f `  (/) ) >. } )
1510rnsnop 4821 . . . . . . . 8  |-  ran  { <.
(/) ,  ( `' f `  (/) ) >. }  =  { ( `' f `  (/) ) }
1614, 15syl6eq 2129 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  { ( `' f `
 (/) ) } )
178, 16eqtr3d 2115 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  A  =  {
( `' f `  (/) ) } )
185, 17syl 14 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  A  =  { ( `' f `
 (/) ) } )
19 f1ofn 5147 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  Fn 
{ (/) } )
2010snid 3425 . . . . . . 7  |-  (/)  e.  { (/)
}
21 funfvex 5212 . . . . . . . 8  |-  ( ( Fun  `' f  /\  (/) 
e.  dom  `' f
)  ->  ( `' f `  (/) )  e. 
_V )
2221funfni 5019 . . . . . . 7  |-  ( ( `' f  Fn  { (/) }  /\  (/)  e.  { (/) } )  ->  ( `' f `  (/) )  e. 
_V )
2319, 20, 22sylancl 404 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( `' f `
 (/) )  e.  _V )
24 sneq 3409 . . . . . . . 8  |-  ( x  =  ( `' f `
 (/) )  ->  { x }  =  { ( `' f `  (/) ) } )
2524eqeq2d 2092 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x } 
<->  A  =  { ( `' f `  (/) ) } ) )
2625spcegv 2686 . . . . . 6  |-  ( ( `' f `  (/) )  e. 
_V  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
2723, 26syl 14 . . . . 5  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
285, 18, 27sylc 61 . . . 4  |-  ( f : A -1-1-onto-> { (/) }  ->  E. x  A  =  { x } )
2928exlimiv 1529 . . 3  |-  ( E. f  f : A -1-1-onto-> { (/)
}  ->  E. x  A  =  { x } )
304, 29sylbi 119 . 2  |-  ( A 
~~  1o  ->  E. x  A  =  { x } )
31 vex 2604 . . . . 5  |-  x  e. 
_V
3231ensn1 6299 . . . 4  |-  { x }  ~~  1o
33 breq1 3788 . . . 4  |-  ( A  =  { x }  ->  ( A  ~~  1o  <->  { x }  ~~  1o ) )
3432, 33mpbiri 166 . . 3  |-  ( A  =  { x }  ->  A  ~~  1o )
3534exlimiv 1529 . 2  |-  ( E. x  A  =  {
x }  ->  A  ~~  1o )
3630, 35impbii 124 1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601   (/)c0 3251   {csn 3398   <.cop 3401   class class class wbr 3785   `'ccnv 4362   ran crn 4364    Fn wfn 4917   -->wf 4918   -onto->wfo 4920   -1-1-onto->wf1o 4921   ` cfv 4922   1oc1o 6017    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1o 6024  df-en 6245
This theorem is referenced by:  en1bg  6303  reuen1  6304  pm54.43  6459
  Copyright terms: Public domain W3C validator