| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1 | Unicode version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| en1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6036 |
. . . . 5
| |
| 2 | 1 | breq2i 3793 |
. . . 4
|
| 3 | bren 6251 |
. . . 4
| |
| 4 | 2, 3 | bitri 182 |
. . 3
|
| 5 | f1ocnv 5159 |
. . . . 5
| |
| 6 | f1ofo 5153 |
. . . . . . . 8
| |
| 7 | forn 5129 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | f1of 5146 |
. . . . . . . . . 10
| |
| 10 | 0ex 3905 |
. . . . . . . . . . . 12
| |
| 11 | 10 | fsn2 5358 |
. . . . . . . . . . 11
|
| 12 | 11 | simprbi 269 |
. . . . . . . . . 10
|
| 13 | 9, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 13 | rneqd 4581 |
. . . . . . . 8
|
| 15 | 10 | rnsnop 4821 |
. . . . . . . 8
|
| 16 | 14, 15 | syl6eq 2129 |
. . . . . . 7
|
| 17 | 8, 16 | eqtr3d 2115 |
. . . . . 6
|
| 18 | 5, 17 | syl 14 |
. . . . 5
|
| 19 | f1ofn 5147 |
. . . . . . 7
| |
| 20 | 10 | snid 3425 |
. . . . . . 7
|
| 21 | funfvex 5212 |
. . . . . . . 8
| |
| 22 | 21 | funfni 5019 |
. . . . . . 7
|
| 23 | 19, 20, 22 | sylancl 404 |
. . . . . 6
|
| 24 | sneq 3409 |
. . . . . . . 8
| |
| 25 | 24 | eqeq2d 2092 |
. . . . . . 7
|
| 26 | 25 | spcegv 2686 |
. . . . . 6
|
| 27 | 23, 26 | syl 14 |
. . . . 5
|
| 28 | 5, 18, 27 | sylc 61 |
. . . 4
|
| 29 | 28 | exlimiv 1529 |
. . 3
|
| 30 | 4, 29 | sylbi 119 |
. 2
|
| 31 | vex 2604 |
. . . . 5
| |
| 32 | 31 | ensn1 6299 |
. . . 4
|
| 33 | breq1 3788 |
. . . 4
| |
| 34 | 32, 33 | mpbiri 166 |
. . 3
|
| 35 | 34 | exlimiv 1529 |
. 2
|
| 36 | 30, 35 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-1o 6024 df-en 6245 |
| This theorem is referenced by: en1bg 6303 reuen1 6304 pm54.43 6459 |
| Copyright terms: Public domain | W3C validator |