ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptssdm Unicode version

Theorem fvmptssdm 5276
Description: If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptssdm  |-  ( ( D  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  D
)  C_  C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)    F( x)

Proof of Theorem fvmptssdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 5198 . . . . . 6  |-  ( y  =  D  ->  ( F `  y )  =  ( F `  D ) )
21sseq1d 3026 . . . . 5  |-  ( y  =  D  ->  (
( F `  y
)  C_  C  <->  ( F `  D )  C_  C
) )
32imbi2d 228 . . . 4  |-  ( y  =  D  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) ) )
4 nfrab1 2533 . . . . . . 7  |-  F/_ x { x  e.  A  |  B  e.  _V }
54nfcri 2213 . . . . . 6  |-  F/ x  y  e.  { x  e.  A  |  B  e.  _V }
6 nfra1 2397 . . . . . . 7  |-  F/ x A. x  e.  A  B  C_  C
7 fvmpt2.1 . . . . . . . . . 10  |-  F  =  ( x  e.  A  |->  B )
8 nfmpt1 3871 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
97, 8nfcxfr 2216 . . . . . . . . 9  |-  F/_ x F
10 nfcv 2219 . . . . . . . . 9  |-  F/_ x
y
119, 10nffv 5205 . . . . . . . 8  |-  F/_ x
( F `  y
)
12 nfcv 2219 . . . . . . . 8  |-  F/_ x C
1311, 12nfss 2992 . . . . . . 7  |-  F/ x
( F `  y
)  C_  C
146, 13nfim 1504 . . . . . 6  |-  F/ x
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
155, 14nfim 1504 . . . . 5  |-  F/ x
( y  e.  {
x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
16 eleq1 2141 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  { x  e.  A  |  B  e.  _V }  <->  y  e.  { x  e.  A  |  B  e.  _V } ) )
17 fveq2 5198 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1817sseq1d 3026 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  C_  C  <->  ( F `  y )  C_  C
) )
1918imbi2d 228 . . . . . 6  |-  ( x  =  y  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) ) )
2016, 19imbi12d 232 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  {
x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )  <->  ( y  e.  { x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
) ) )
217dmmpt 4836 . . . . . . 7  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
2221eleq2i 2145 . . . . . 6  |-  ( x  e.  dom  F  <->  x  e.  { x  e.  A  |  B  e.  _V } )
2321rabeq2i 2598 . . . . . . . . . 10  |-  ( x  e.  dom  F  <->  ( x  e.  A  /\  B  e. 
_V ) )
247fvmpt2 5275 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
25 eqimss 3051 . . . . . . . . . . 11  |-  ( ( F `  x )  =  B  ->  ( F `  x )  C_  B )
2624, 25syl 14 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  C_  B )
2723, 26sylbi 119 . . . . . . . . 9  |-  ( x  e.  dom  F  -> 
( F `  x
)  C_  B )
2827adantr 270 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  x
)  C_  B )
297dmmptss 4837 . . . . . . . . . 10  |-  dom  F  C_  A
3029sseli 2995 . . . . . . . . 9  |-  ( x  e.  dom  F  ->  x  e.  A )
31 rsp 2411 . . . . . . . . 9  |-  ( A. x  e.  A  B  C_  C  ->  ( x  e.  A  ->  B  C_  C ) )
3230, 31mpan9 275 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  ->  B  C_  C )
3328, 32sstrd 3009 . . . . . . 7  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  x
)  C_  C )
3433ex 113 . . . . . 6  |-  ( x  e.  dom  F  -> 
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )
)
3522, 34sylbir 133 . . . . 5  |-  ( x  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )
3615, 20, 35chvar 1680 . . . 4  |-  ( y  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
373, 36vtoclga 2664 . . 3  |-  ( D  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) )
3837, 21eleq2s 2173 . 2  |-  ( D  e.  dom  F  -> 
( A. x  e.  A  B  C_  C  ->  ( F `  D
)  C_  C )
)
3938imp 122 1  |-  ( ( D  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  D
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   {crab 2352   _Vcvv 2601    C_ wss 2973    |-> cmpt 3839   dom cdm 4363   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator