ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01or Unicode version

Theorem fz01or 10278
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
Assertion
Ref Expression
fz01or  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )

Proof of Theorem fz01or
StepHypRef Expression
1 1eluzge0 8662 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
2 eluzfz1 9050 . . . . . 6  |-  ( 1  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 1
) )
31, 2ax-mp 7 . . . . 5  |-  0  e.  ( 0 ... 1
)
4 fzsplit 9070 . . . . 5  |-  ( 0  e.  ( 0 ... 1 )  ->  (
0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
53, 4ax-mp 7 . . . 4  |-  ( 0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) )
65eleq2i 2145 . . 3  |-  ( A  e.  ( 0 ... 1 )  <->  A  e.  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
7 elun 3113 . . 3  |-  ( A  e.  ( ( 0 ... 0 )  u.  ( ( 0  +  1 ) ... 1
) )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
86, 7bitri 182 . 2  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
9 elfz1eq 9054 . . . 4  |-  ( A  e.  ( 0 ... 0 )  ->  A  =  0 )
10 0nn0 8303 . . . . . . 7  |-  0  e.  NN0
11 nn0uz 8653 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1210, 11eleqtri 2153 . . . . . 6  |-  0  e.  ( ZZ>= `  0 )
13 eluzfz1 9050 . . . . . 6  |-  ( 0  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 0
) )
1412, 13ax-mp 7 . . . . 5  |-  0  e.  ( 0 ... 0
)
15 eleq1 2141 . . . . 5  |-  ( A  =  0  ->  ( A  e.  ( 0 ... 0 )  <->  0  e.  ( 0 ... 0
) ) )
1614, 15mpbiri 166 . . . 4  |-  ( A  =  0  ->  A  e.  ( 0 ... 0
) )
179, 16impbii 124 . . 3  |-  ( A  e.  ( 0 ... 0 )  <->  A  = 
0 )
18 0p1e1 8153 . . . . . 6  |-  ( 0  +  1 )  =  1
1918oveq1i 5542 . . . . 5  |-  ( ( 0  +  1 ) ... 1 )  =  ( 1 ... 1
)
2019eleq2i 2145 . . . 4  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  e.  ( 1 ... 1
) )
21 elfz1eq 9054 . . . . 5  |-  ( A  e.  ( 1 ... 1 )  ->  A  =  1 )
22 1nn 8050 . . . . . . . 8  |-  1  e.  NN
23 nnuz 8654 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23eleqtri 2153 . . . . . . 7  |-  1  e.  ( ZZ>= `  1 )
25 eluzfz1 9050 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... 1
) )
2624, 25ax-mp 7 . . . . . 6  |-  1  e.  ( 1 ... 1
)
27 eleq1 2141 . . . . . 6  |-  ( A  =  1  ->  ( A  e.  ( 1 ... 1 )  <->  1  e.  ( 1 ... 1
) ) )
2826, 27mpbiri 166 . . . . 5  |-  ( A  =  1  ->  A  e.  ( 1 ... 1
) )
2921, 28impbii 124 . . . 4  |-  ( A  e.  ( 1 ... 1 )  <->  A  = 
1 )
3020, 29bitri 182 . . 3  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  = 
1 )
3117, 30orbi12i 713 . 2  |-  ( ( A  e.  ( 0 ... 0 )  \/  A  e.  ( ( 0  +  1 ) ... 1 ) )  <-> 
( A  =  0  \/  A  =  1 ) )
328, 31bitri 182 1  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433    u. cun 2971   ` cfv 4922  (class class class)co 5532   0cc0 6981   1c1 6982    + caddc 6984   NNcn 8039   NN0cn0 8288   ZZ>=cuz 8619   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  mod2eq1n2dvds  10279
  Copyright terms: Public domain W3C validator