ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind Unicode version

Theorem fzind 8462
Description: Induction on the integers from  M to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
fzind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fzind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fzind.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fzind.5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
fzind.6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fzind  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
Distinct variable groups:    x, K    x, M, y    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 3788 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  <_  N  <->  M  <_  N ) )
21anbi2d 451 . . . . . . . . . 10  |-  ( x  =  M  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
3 fzind.1 . . . . . . . . . 10  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
42, 3imbi12d 232 . . . . . . . . 9  |-  ( x  =  M  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  M  <_  N )  ->  ps ) ) )
5 breq1 3788 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  <_  N  <->  y  <_  N ) )
65anbi2d 451 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  y  <_  N ) ) )
7 fzind.2 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
86, 7imbi12d 232 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  y  <_  N )  ->  ch ) ) )
9 breq1 3788 . . . . . . . . . . 11  |-  ( x  =  ( y  +  1 )  ->  (
x  <_  N  <->  ( y  +  1 )  <_  N ) )
109anbi2d 451 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )
) )
11 fzind.3 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
1210, 11imbi12d 232 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  th ) ) )
13 breq1 3788 . . . . . . . . . . 11  |-  ( x  =  K  ->  (
x  <_  N  <->  K  <_  N ) )
1413anbi2d 451 . . . . . . . . . 10  |-  ( x  =  K  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  K  <_  N ) ) )
15 fzind.4 . . . . . . . . . 10  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
1614, 15imbi12d 232 . . . . . . . . 9  |-  ( x  =  K  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  K  <_  N )  ->  ta ) ) )
17 fzind.5 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
18173expib 1141 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  M  <_  N )  ->  ps ) )
19 zre 8355 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  y  e.  RR )
20 zre 8355 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  RR )
21 p1le 7927 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR  /\  N  e.  RR  /\  (
y  +  1 )  <_  N )  -> 
y  <_  N )
22213expia 1140 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR  /\  N  e.  RR )  ->  ( ( y  +  1 )  <_  N  ->  y  <_  N )
)
2319, 20, 22syl2an 283 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( y  +  1 )  <_  N  ->  y  <_  N )
)
2423imdistanda 436 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  (
( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ( N  e.  ZZ  /\  y  <_  N )
) )
2524imim1d 74 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  ch ) ) )
26253ad2ant2 960 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  ch ) ) )
27 zltp1le 8405 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( y  <  N  <->  ( y  +  1 )  <_  N ) )
2827adantlr 460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  N  e.  ZZ )  ->  ( y  < 
N  <->  ( y  +  1 )  <_  N
) )
2928expcom 114 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  (
( y  e.  ZZ  /\  M  <_  y )  ->  ( y  <  N  <->  ( y  +  1 )  <_  N ) ) )
3029pm5.32d 437 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  (
( ( y  e.  ZZ  /\  M  <_ 
y )  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  M  <_  y )  /\  ( y  +  1 )  <_  N )
) )
3130adantl 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  M  <_  y )  /\  ( y  +  1 )  <_  N )
) )
32 fzind.6 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
3332expcom 114 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ch  ->  th ) ) )
34333expa 1138 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ch  ->  th ) ) )
3534com12 30 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  ->  ( ch  ->  th ) ) )
3631, 35sylbird 168 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  (
y  +  1 )  <_  N )  -> 
( ch  ->  th )
) )
3736ex 113 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( ( y  e.  ZZ  /\  M  <_ 
y )  /\  (
y  +  1 )  <_  N )  -> 
( ch  ->  th )
) ) )
3837com23 77 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  (
( ( y  e.  ZZ  /\  M  <_ 
y )  /\  (
y  +  1 )  <_  N )  -> 
( N  e.  ZZ  ->  ( ch  ->  th )
) ) )
3938expd 254 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  (
( y  e.  ZZ  /\  M  <_  y )  ->  ( ( y  +  1 )  <_  N  ->  ( N  e.  ZZ  ->  ( ch  ->  th )
) ) ) )
40393impib 1136 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( y  +  1 )  <_  N  ->  ( N  e.  ZZ  ->  ( ch  ->  th )
) ) )
4140com23 77 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  ( N  e.  ZZ  ->  ( ( y  +  1 )  <_  N  ->  ( ch  ->  th )
) ) )
4241impd 251 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ( ch  ->  th )
) )
4342a2d 26 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  th ) ) )
4426, 43syld 44 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  th ) ) )
454, 8, 12, 16, 18, 44uzind 8458 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  ->  (
( N  e.  ZZ  /\  K  <_  N )  ->  ta ) )
4645expcomd 1370 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta ) ) )
47463expb 1139 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( K  e.  ZZ  /\  M  <_  K )
)  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta )
) )
4847expcom 114 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K )  -> 
( M  e.  ZZ  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta ) ) ) )
4948com23 77 . . . 4  |-  ( ( K  e.  ZZ  /\  M  <_  K )  -> 
( K  <_  N  ->  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ta ) ) ) )
50493impia 1135 . . 3  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ta ) ) )
5150impd 251 . 2  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ta ) )
5251impcom 123 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  fnn0ind  8463  fzind2  9248
  Copyright terms: Public domain W3C validator