| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind | Unicode version | ||
| Description: Induction on the upper
integers that start at |
| Ref | Expression |
|---|---|
| uzind.1 |
|
| uzind.2 |
|
| uzind.3 |
|
| uzind.4 |
|
| uzind.5 |
|
| uzind.6 |
|
| Ref | Expression |
|---|---|
| uzind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 8355 |
. . . . . . . . . . 11
| |
| 2 | 1 | leidd 7615 |
. . . . . . . . . 10
|
| 3 | uzind.5 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | jca 300 |
. . . . . . . . 9
|
| 5 | 4 | ancli 316 |
. . . . . . . 8
|
| 6 | breq2 3789 |
. . . . . . . . . 10
| |
| 7 | uzind.1 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | anbi12d 456 |
. . . . . . . . 9
|
| 9 | 8 | elrab 2749 |
. . . . . . . 8
|
| 10 | 5, 9 | sylibr 132 |
. . . . . . 7
|
| 11 | peano2z 8387 |
. . . . . . . . . . . 12
| |
| 12 | 11 | a1i 9 |
. . . . . . . . . . 11
|
| 13 | 12 | adantrd 273 |
. . . . . . . . . 10
|
| 14 | zre 8355 |
. . . . . . . . . . . . . 14
| |
| 15 | ltp1 7922 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | 15 | adantl 271 |
. . . . . . . . . . . . . . . 16
|
| 17 | peano2re 7244 |
. . . . . . . . . . . . . . . . . 18
| |
| 18 | 17 | ancli 316 |
. . . . . . . . . . . . . . . . 17
|
| 19 | lelttr 7199 |
. . . . . . . . . . . . . . . . . 18
| |
| 20 | 19 | 3expb 1139 |
. . . . . . . . . . . . . . . . 17
|
| 21 | 18, 20 | sylan2 280 |
. . . . . . . . . . . . . . . 16
|
| 22 | 16, 21 | mpan2d 418 |
. . . . . . . . . . . . . . 15
|
| 23 | ltle 7198 |
. . . . . . . . . . . . . . . 16
| |
| 24 | 17, 23 | sylan2 280 |
. . . . . . . . . . . . . . 15
|
| 25 | 22, 24 | syld 44 |
. . . . . . . . . . . . . 14
|
| 26 | 1, 14, 25 | syl2an 283 |
. . . . . . . . . . . . 13
|
| 27 | 26 | adantrd 273 |
. . . . . . . . . . . 12
|
| 28 | 27 | expimpd 355 |
. . . . . . . . . . 11
|
| 29 | uzind.6 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | 3exp 1137 |
. . . . . . . . . . . 12
|
| 31 | 30 | imp4d 344 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | jcad 301 |
. . . . . . . . . 10
|
| 33 | 13, 32 | jcad 301 |
. . . . . . . . 9
|
| 34 | breq2 3789 |
. . . . . . . . . . 11
| |
| 35 | uzind.2 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | anbi12d 456 |
. . . . . . . . . 10
|
| 37 | 36 | elrab 2749 |
. . . . . . . . 9
|
| 38 | breq2 3789 |
. . . . . . . . . . 11
| |
| 39 | uzind.3 |
. . . . . . . . . . 11
| |
| 40 | 38, 39 | anbi12d 456 |
. . . . . . . . . 10
|
| 41 | 40 | elrab 2749 |
. . . . . . . . 9
|
| 42 | 33, 37, 41 | 3imtr4g 203 |
. . . . . . . 8
|
| 43 | 42 | ralrimiv 2433 |
. . . . . . 7
|
| 44 | peano5uzti 8455 |
. . . . . . 7
| |
| 45 | 10, 43, 44 | mp2and 423 |
. . . . . 6
|
| 46 | 45 | sseld 2998 |
. . . . 5
|
| 47 | breq2 3789 |
. . . . . 6
| |
| 48 | 47 | elrab 2749 |
. . . . 5
|
| 49 | breq2 3789 |
. . . . . . 7
| |
| 50 | uzind.4 |
. . . . . . 7
| |
| 51 | 49, 50 | anbi12d 456 |
. . . . . 6
|
| 52 | 51 | elrab 2749 |
. . . . 5
|
| 53 | 46, 48, 52 | 3imtr3g 202 |
. . . 4
|
| 54 | 53 | 3impib 1136 |
. . 3
|
| 55 | 54 | simprd 112 |
. 2
|
| 56 | 55 | simprd 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 |
| This theorem is referenced by: uzind2 8459 uzind3 8460 nn0ind 8461 fzind 8462 resqrexlemdecn 9898 ialgcvga 10433 |
| Copyright terms: Public domain | W3C validator |