ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind2 Unicode version

Theorem fzind2 9248
Description: Induction on the integers from  M to  N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 8462 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
Hypotheses
Ref Expression
fzind2.1  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
fzind2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fzind2.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fzind2.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fzind2.5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
fzind2.6  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fzind2  |-  ( K  e.  ( M ... N )  ->  ta )
Distinct variable groups:    x, K    x, M, y    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fzind2
StepHypRef Expression
1 elfz2 9036 . . 3  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 anass 393 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
3 df-3an 921 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
43anbi1i 445 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N
) ) )
5 3anass 923 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
65anbi2i 444 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
72, 4, 63bitr4i 210 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
81, 7bitri 182 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
9 fzind2.1 . . 3  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
10 fzind2.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
11 fzind2.3 . . 3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
12 fzind2.4 . . 3  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
13 eluz2 8625 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
14 fzind2.5 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
1513, 14sylbir 133 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
16 3anass 923 . . . 4  |-  ( ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N )  <->  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )
17 elfzo 9159 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
y  e.  ( M..^ N )  <->  ( M  <_  y  /\  y  < 
N ) ) )
18 fzind2.6 . . . . . . . 8  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
1917, 18syl6bir 162 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
20193coml 1145 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  y  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
21203expa 1138 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  y  e.  ZZ )  ->  ( ( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
2221impr 371 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )  ->  ( ch  ->  th ) )
2316, 22sylan2b 281 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
249, 10, 11, 12, 15, 23fzind 8462 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
258, 24sylbi 119 1  |-  ( K  e.  ( M ... N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  exfzdc  9249  iseqcaopr3  9460  iseqid3s  9466
  Copyright terms: Public domain W3C validator