| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqid3s | Unicode version | ||
| Description: A sequence that consists
of zeroes up to |
| Ref | Expression |
|---|---|
| iseqid3s.1 |
|
| iseqid3s.2 |
|
| iseqid3s.3 |
|
| iseqid3s.z |
|
| iseqid3s.s |
|
| iseqid3s.f |
|
| iseqid3s.cl |
|
| Ref | Expression |
|---|---|
| iseqid3s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqid3s.2 |
. . 3
| |
| 2 | eluzfz2 9051 |
. . 3
| |
| 3 | fveq2 5198 |
. . . . . 6
| |
| 4 | 3 | eqeq1d 2089 |
. . . . 5
|
| 5 | 4 | imbi2d 228 |
. . . 4
|
| 6 | fveq2 5198 |
. . . . . 6
| |
| 7 | 6 | eqeq1d 2089 |
. . . . 5
|
| 8 | 7 | imbi2d 228 |
. . . 4
|
| 9 | fveq2 5198 |
. . . . . 6
| |
| 10 | 9 | eqeq1d 2089 |
. . . . 5
|
| 11 | 10 | imbi2d 228 |
. . . 4
|
| 12 | fveq2 5198 |
. . . . . 6
| |
| 13 | 12 | eqeq1d 2089 |
. . . . 5
|
| 14 | 13 | imbi2d 228 |
. . . 4
|
| 15 | eluzel2 8624 |
. . . . . . . 8
| |
| 16 | 1, 15 | syl 14 |
. . . . . . 7
|
| 17 | iseqid3s.s |
. . . . . . 7
| |
| 18 | iseqid3s.f |
. . . . . . 7
| |
| 19 | iseqid3s.cl |
. . . . . . 7
| |
| 20 | 16, 17, 18, 19 | iseq1 9442 |
. . . . . 6
|
| 21 | iseqid3s.3 |
. . . . . . . 8
| |
| 22 | 21 | ralrimiva 2434 |
. . . . . . 7
|
| 23 | eluzfz1 9050 |
. . . . . . . 8
| |
| 24 | fveq2 5198 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq1d 2089 |
. . . . . . . . 9
|
| 26 | 25 | rspcv 2697 |
. . . . . . . 8
|
| 27 | 1, 23, 26 | 3syl 17 |
. . . . . . 7
|
| 28 | 22, 27 | mpd 13 |
. . . . . 6
|
| 29 | 20, 28 | eqtrd 2113 |
. . . . 5
|
| 30 | 29 | a1i 9 |
. . . 4
|
| 31 | elfzouz 9161 |
. . . . . . . . . . 11
| |
| 32 | 31 | adantl 271 |
. . . . . . . . . 10
|
| 33 | 17 | adantr 270 |
. . . . . . . . . 10
|
| 34 | 18 | adantlr 460 |
. . . . . . . . . 10
|
| 35 | 19 | adantlr 460 |
. . . . . . . . . 10
|
| 36 | 32, 33, 34, 35 | iseqp1 9445 |
. . . . . . . . 9
|
| 37 | 36 | adantr 270 |
. . . . . . . 8
|
| 38 | simpr 108 |
. . . . . . . . 9
| |
| 39 | fzofzp1 9236 |
. . . . . . . . . . . 12
| |
| 40 | 39 | adantl 271 |
. . . . . . . . . . 11
|
| 41 | 22 | adantr 270 |
. . . . . . . . . . 11
|
| 42 | fveq2 5198 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | eqeq1d 2089 |
. . . . . . . . . . . 12
|
| 44 | 43 | rspcv 2697 |
. . . . . . . . . . 11
|
| 45 | 40, 41, 44 | sylc 61 |
. . . . . . . . . 10
|
| 46 | 45 | adantr 270 |
. . . . . . . . 9
|
| 47 | 38, 46 | oveq12d 5550 |
. . . . . . . 8
|
| 48 | iseqid3s.1 |
. . . . . . . . 9
| |
| 49 | 48 | ad2antrr 471 |
. . . . . . . 8
|
| 50 | 37, 47, 49 | 3eqtrd 2117 |
. . . . . . 7
|
| 51 | 50 | ex 113 |
. . . . . 6
|
| 52 | 51 | expcom 114 |
. . . . 5
|
| 53 | 52 | a2d 26 |
. . . 4
|
| 54 | 5, 8, 11, 14, 30, 53 | fzind2 9248 |
. . 3
|
| 55 | 1, 2, 54 | 3syl 17 |
. 2
|
| 56 | 55 | pm2.43i 48 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 df-fzo 9153 df-iseq 9432 |
| This theorem is referenced by: iseqid 9467 iser0 9471 |
| Copyright terms: Public domain | W3C validator |