ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqid3s Unicode version

Theorem iseqid3s 9466
Description: A sequence that consists of zeroes up to  N sums to zero at  N. In this case by "zero" we mean whatever the identity  Z is for the operation  .+). (Contributed by Jim Kingdon, 18-Aug-2021.)
Hypotheses
Ref Expression
iseqid3s.1  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
iseqid3s.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid3s.3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
iseqid3s.z  |-  ( ph  ->  Z  e.  S )
iseqid3s.s  |-  ( ph  ->  S  e.  V )
iseqid3s.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid3s.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqid3s  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  Z )
Distinct variable groups:    x, y,  .+    x, F, y    x, M, y    ph, x, y    x, Z, y    x, N, y   
x, S, y
Allowed substitution hints:    V( x, y)

Proof of Theorem iseqid3s
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqid3s.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9051 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
3 fveq2 5198 . . . . . 6  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 M ) )
43eqeq1d 2089 . . . . 5  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  M
)  =  Z ) )
54imbi2d 228 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 M )  =  Z ) ) )
6 fveq2 5198 . . . . . 6  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 k ) )
76eqeq1d 2089 . . . . 5  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  Z ) )
87imbi2d 228 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 k )  =  Z ) ) )
9 fveq2 5198 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) ) )
109eqeq1d 2089 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  (
k  +  1 ) )  =  Z ) )
1110imbi2d 228 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  Z ) ) )
12 fveq2 5198 . . . . . 6  |-  ( w  =  N  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 N ) )
1312eqeq1d 2089 . . . . 5  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  Z ) )
1413imbi2d 228 . . . 4  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 N )  =  Z ) ) )
15 eluzel2 8624 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
161, 15syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
17 iseqid3s.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
18 iseqid3s.f . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
19 iseqid3s.cl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2016, 17, 18, 19iseq1 9442 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  M
)  =  ( F `
 M ) )
21 iseqid3s.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
2221ralrimiva 2434 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
23 eluzfz1 9050 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
24 fveq2 5198 . . . . . . . . . 10  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
2524eqeq1d 2089 . . . . . . . . 9  |-  ( x  =  M  ->  (
( F `  x
)  =  Z  <->  ( F `  M )  =  Z ) )
2625rspcv 2697 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( A. x  e.  ( M ... N ) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
271, 23, 263syl 17 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  ( M ... N
) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
2822, 27mpd 13 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  Z )
2920, 28eqtrd 2113 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  M
)  =  Z )
3029a1i 9 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  M
)  =  Z ) )
31 elfzouz 9161 . . . . . . . . . . 11  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
3231adantl 271 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  (
ZZ>= `  M ) )
3317adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  S  e.  V
)
3418adantlr 460 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
3519adantlr 460 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3632, 33, 34, 35iseqp1 9445 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F ,  S ) `  (
k  +  1 ) )  =  ( (  seq M (  .+  ,  F ,  S ) `
 k )  .+  ( F `  ( k  +  1 ) ) ) )
3736adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
38 simpr 108 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )
39 fzofzp1 9236 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
4039adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
4122adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
42 fveq2 5198 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
4342eqeq1d 2089 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  =  Z  <->  ( F `  ( k  +  1 ) )  =  Z ) )
4443rspcv 2697 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  ( A. x  e.  ( M ... N ) ( F `  x )  =  Z  ->  ( F `  ( k  +  1 ) )  =  Z ) )
4540, 41, 44sylc 61 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( F `  ( k  +  1 ) )  =  Z )
4645adantr 270 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  ( F `  ( k  +  1 ) )  =  Z )
4738, 46oveq12d 5550 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  .+  ( F `  ( k  +  1 ) ) )  =  ( Z 
.+  Z ) )
48 iseqid3s.1 . . . . . . . . 9  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
4948ad2antrr 471 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  ( Z  .+  Z )  =  Z )
5037, 47, 493eqtrd 2117 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  Z )
5150ex 113 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  =  Z  ->  (  seq M
(  .+  ,  F ,  S ) `  (
k  +  1 ) )  =  Z ) )
5251expcom 114 . . . . 5  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F ,  S ) `  k
)  =  Z  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  Z ) ) )
5352a2d 26 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  Z )  ->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  Z ) ) )
545, 8, 11, 14, 30, 53fzind2 9248 . . 3  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  Z ) )
551, 2, 543syl 17 . 2  |-  ( ph  ->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `  N )  =  Z ) )
5655pm2.43i 48 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029  ..^cfzo 9152    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153  df-iseq 9432
This theorem is referenced by:  iseqid  9467  iser0  9471
  Copyright terms: Public domain W3C validator