ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzm1 Unicode version

Theorem fzm1 9117
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 5539 . . . . . . 7  |-  ( N  =  M  ->  ( N ... N )  =  ( M ... N
) )
21eleq2d 2148 . . . . . 6  |-  ( N  =  M  ->  ( K  e.  ( N ... N )  <->  K  e.  ( M ... N ) ) )
3 elfz1eq 9054 . . . . . 6  |-  ( K  e.  ( N ... N )  ->  K  =  N )
42, 3syl6bir 162 . . . . 5  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  K  =  N ) )
5 olc 664 . . . . 5  |-  ( K  =  N  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) )
64, 5syl6 33 . . . 4  |-  ( N  =  M  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
76adantl 271 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
8 noel 3255 . . . . . 6  |-  -.  K  e.  (/)
9 eluzelz 8628 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
109adantr 270 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  ZZ )
1110zred 8469 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  N  e.  RR )
1211ltm1d 8010 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  N )
13 breq2 3789 . . . . . . . . . 10  |-  ( N  =  M  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1413adantl 271 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  N  <->  ( N  -  1 )  < 
M ) )
1512, 14mpbid 145 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  <  M )
16 eluzel2 8624 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1716adantr 270 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  M  e.  ZZ )
18 1zzd 8378 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  1  e.  ZZ )
1910, 18zsubcld 8474 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( N  -  1 )  e.  ZZ )
20 fzn 9061 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( ( N  -  1 )  < 
M  <->  ( M ... ( N  -  1
) )  =  (/) ) )
2117, 19, 20syl2anc 403 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( N  -  1 )  <  M  <->  ( M ... ( N  -  1 ) )  =  (/) ) )
2215, 21mpbid 145 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( M ... ( N  - 
1 ) )  =  (/) )
2322eleq2d 2148 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  <->  K  e.  (/) ) )
248, 23mtbiri 632 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  -.  K  e.  ( M ... ( N  -  1 ) ) )
2524pm2.21d 581 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... ( N  -  1 ) )  ->  K  e.  ( M ... N
) ) )
26 eluzfz2 9051 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2726ad2antrr 471 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  N  e.  ( M ... N ) )
28 eleq1 2141 . . . . . . 7  |-  ( K  =  N  ->  ( K  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
2928adantl 271 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  ( K  e.  ( M ... N
)  <->  N  e.  ( M ... N ) ) )
3027, 29mpbird 165 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  N  =  M )  /\  K  =  N
)  ->  K  e.  ( M ... N ) )
3130ex 113 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  =  N  ->  K  e.  ( M ... N ) ) )
3225, 31jaod 669 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N )  ->  K  e.  ( M ... N ) ) )
337, 32impbid 127 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  =  M )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
34 elfzp1 9089 . . . 4  |-  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... (
( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
3534adantl 271 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  - 
1 )  +  1 ) ) ) )
369adantr 270 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  ZZ )
3736zcnd 8470 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  N  e.  CC )
38 npcan1 7482 . . . . . 6  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
3937, 38syl 14 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( N  -  1 )  +  1 )  =  N )
4039oveq2d 5548 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( M ... ( ( N  -  1 )  +  1 ) )  =  ( M ... N
) )
4140eleq2d 2148 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... ( ( N  - 
1 )  +  1 ) )  <->  K  e.  ( M ... N ) ) )
4239eqeq2d 2092 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  =  ( ( N  -  1 )  +  1 )  <->  K  =  N ) )
4342orbi2d 736 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  (
( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  ( ( N  -  1 )  +  1 ) )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
4435, 41, 433bitr3d 216 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  ->  ( K  e.  ( M ... N )  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
45 uzm1 8649 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
4633, 44, 45mpjaodan 744 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   (/)c0 3251   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   1c1 6982    + caddc 6984    < clt 7153    - cmin 7279   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  bcpasc  9693
  Copyright terms: Public domain W3C validator