ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcddiv Unicode version

Theorem gcddiv 10408
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcddiv  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  ( C  ||  A  /\  C  ||  B ) )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )

Proof of Theorem gcddiv
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 8370 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  ZZ )
213ad2ant3 961 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  C  e.  ZZ )
3 simp1 938 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  A  e.  ZZ )
4 divides 10197 . . . . . 6  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  ( C  ||  A  <->  E. a  e.  ZZ  (
a  x.  C )  =  A ) )
52, 3, 4syl2anc 403 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  ||  A  <->  E. a  e.  ZZ  ( a  x.  C )  =  A ) )
6 simp2 939 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  B  e.  ZZ )
7 divides 10197 . . . . . 6  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  ||  B  <->  E. b  e.  ZZ  (
b  x.  C )  =  B ) )
82, 6, 7syl2anc 403 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  ||  B  <->  E. b  e.  ZZ  ( b  x.  C )  =  B ) )
95, 8anbi12d 456 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  <-> 
( E. a  e.  ZZ  ( a  x.  C )  =  A  /\  E. b  e.  ZZ  ( b  x.  C )  =  B ) ) )
10 reeanv 2523 . . . 4  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  <-> 
( E. a  e.  ZZ  ( a  x.  C )  =  A  /\  E. b  e.  ZZ  ( b  x.  C )  =  B ) )
119, 10syl6bbr 196 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  <->  E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B ) ) )
12 gcdcl 10358 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  gcd  b
)  e.  NN0 )
1312nn0cnd 8343 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  gcd  b
)  e.  CC )
14133adant3 958 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
a  gcd  b )  e.  CC )
15 nncn 8047 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  e.  CC )
16153ad2ant3 961 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C  e.  CC )
17 simp3 940 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C  e.  NN )
1817nnap0d 8084 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C #  0 )
1914, 16, 18divcanap4d 7883 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  gcd  b )  x.  C
)  /  C )  =  ( a  gcd  b ) )
20 nnnn0 8295 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  e.  NN0 )
21 mulgcdr 10407 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN0 )  ->  (
( a  x.  C
)  gcd  ( b  x.  C ) )  =  ( ( a  gcd  b )  x.  C
) )
2220, 21syl3an3 1204 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( a  x.  C
)  gcd  ( b  x.  C ) )  =  ( ( a  gcd  b )  x.  C
) )
2322oveq1d 5547 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  gcd  (
b  x.  C ) )  /  C )  =  ( ( ( a  gcd  b )  x.  C )  /  C ) )
24 zcn 8356 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
25243ad2ant1 959 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  a  e.  CC )
2625, 16, 18divcanap4d 7883 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( a  x.  C
)  /  C )  =  a )
27 zcn 8356 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
28273ad2ant2 960 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  b  e.  CC )
2928, 16, 18divcanap4d 7883 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( b  x.  C
)  /  C )  =  b )
3026, 29oveq12d 5550 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  /  C
)  gcd  ( (
b  x.  C )  /  C ) )  =  ( a  gcd  b ) )
3119, 23, 303eqtr4d 2123 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  gcd  (
b  x.  C ) )  /  C )  =  ( ( ( a  x.  C )  /  C )  gcd  ( ( b  x.  C )  /  C
) ) )
32 oveq12 5541 . . . . . . . . . 10  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( a  x.  C )  gcd  ( b  x.  C
) )  =  ( A  gcd  B ) )
3332oveq1d 5547 . . . . . . . . 9  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( a  x.  C )  gcd  ( b  x.  C ) )  /  C )  =  ( ( A  gcd  B
)  /  C ) )
34 oveq1 5539 . . . . . . . . . 10  |-  ( ( a  x.  C )  =  A  ->  (
( a  x.  C
)  /  C )  =  ( A  /  C ) )
35 oveq1 5539 . . . . . . . . . 10  |-  ( ( b  x.  C )  =  B  ->  (
( b  x.  C
)  /  C )  =  ( B  /  C ) )
3634, 35oveqan12d 5551 . . . . . . . . 9  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( a  x.  C )  /  C )  gcd  ( ( b  x.  C )  /  C
) )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )
3733, 36eqeq12d 2095 . . . . . . . 8  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( ( a  x.  C
)  gcd  ( b  x.  C ) )  /  C )  =  ( ( ( a  x.  C )  /  C
)  gcd  ( (
b  x.  C )  /  C ) )  <-> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) )
3831, 37syl5ibcom 153 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  =  A  /\  ( b  x.  C )  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
39383expa 1138 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  C  e.  NN )  ->  ( ( ( a  x.  C )  =  A  /\  (
b  x.  C )  =  B )  -> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) )
4039expcom 114 . . . . 5  |-  ( C  e.  NN  ->  (
( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( a  x.  C )  =  A  /\  (
b  x.  C )  =  B )  -> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) ) )
4140rexlimdvv 2483 . . . 4  |-  ( C  e.  NN  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
42413ad2ant3 961 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
4311, 42sylbid 148 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
4443imp 122 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  ( C  ||  A  /\  C  ||  B ) )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979    x. cmul 6986    / cdiv 7760   NNcn 8039   NN0cn0 8288   ZZcz 8351    || cdvds 10195    gcd cgcd 10338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339
This theorem is referenced by:  sqgcd  10418  divgcdodd  10522
  Copyright terms: Public domain W3C validator