| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcddiv | Unicode version | ||
| Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| gcddiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 8370 |
. . . . . . 7
| |
| 2 | 1 | 3ad2ant3 961 |
. . . . . 6
|
| 3 | simp1 938 |
. . . . . 6
| |
| 4 | divides 10197 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 403 |
. . . . 5
|
| 6 | simp2 939 |
. . . . . 6
| |
| 7 | divides 10197 |
. . . . . 6
| |
| 8 | 2, 6, 7 | syl2anc 403 |
. . . . 5
|
| 9 | 5, 8 | anbi12d 456 |
. . . 4
|
| 10 | reeanv 2523 |
. . . 4
| |
| 11 | 9, 10 | syl6bbr 196 |
. . 3
|
| 12 | gcdcl 10358 |
. . . . . . . . . . . 12
| |
| 13 | 12 | nn0cnd 8343 |
. . . . . . . . . . 11
|
| 14 | 13 | 3adant3 958 |
. . . . . . . . . 10
|
| 15 | nncn 8047 |
. . . . . . . . . . 11
| |
| 16 | 15 | 3ad2ant3 961 |
. . . . . . . . . 10
|
| 17 | simp3 940 |
. . . . . . . . . . 11
| |
| 18 | 17 | nnap0d 8084 |
. . . . . . . . . 10
|
| 19 | 14, 16, 18 | divcanap4d 7883 |
. . . . . . . . 9
|
| 20 | nnnn0 8295 |
. . . . . . . . . . 11
| |
| 21 | mulgcdr 10407 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | syl3an3 1204 |
. . . . . . . . . 10
|
| 23 | 22 | oveq1d 5547 |
. . . . . . . . 9
|
| 24 | zcn 8356 |
. . . . . . . . . . . 12
| |
| 25 | 24 | 3ad2ant1 959 |
. . . . . . . . . . 11
|
| 26 | 25, 16, 18 | divcanap4d 7883 |
. . . . . . . . . 10
|
| 27 | zcn 8356 |
. . . . . . . . . . . 12
| |
| 28 | 27 | 3ad2ant2 960 |
. . . . . . . . . . 11
|
| 29 | 28, 16, 18 | divcanap4d 7883 |
. . . . . . . . . 10
|
| 30 | 26, 29 | oveq12d 5550 |
. . . . . . . . 9
|
| 31 | 19, 23, 30 | 3eqtr4d 2123 |
. . . . . . . 8
|
| 32 | oveq12 5541 |
. . . . . . . . . 10
| |
| 33 | 32 | oveq1d 5547 |
. . . . . . . . 9
|
| 34 | oveq1 5539 |
. . . . . . . . . 10
| |
| 35 | oveq1 5539 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | oveqan12d 5551 |
. . . . . . . . 9
|
| 37 | 33, 36 | eqeq12d 2095 |
. . . . . . . 8
|
| 38 | 31, 37 | syl5ibcom 153 |
. . . . . . 7
|
| 39 | 38 | 3expa 1138 |
. . . . . 6
|
| 40 | 39 | expcom 114 |
. . . . 5
|
| 41 | 40 | rexlimdvv 2483 |
. . . 4
|
| 42 | 41 | 3ad2ant3 961 |
. . 3
|
| 43 | 11, 42 | sylbid 148 |
. 2
|
| 44 | 43 | imp 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-sup 6397 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-fz 9030 df-fzo 9153 df-fl 9274 df-mod 9325 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 df-gcd 10339 |
| This theorem is referenced by: sqgcd 10418 divgcdodd 10522 |
| Copyright terms: Public domain | W3C validator |