![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imadmrn | GIF version |
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 2604 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opeldm 4556 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
4 | 3 | pm4.71i 383 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
5 | ancom 262 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
6 | 4, 5 | bitr2i 183 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
7 | 6 | exbii 1536 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | abbii 2194 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
9 | dfima3 4691 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
10 | dfrn3 4542 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
11 | 8, 9, 10 | 3eqtr4i 2111 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 {cab 2067 〈cop 3401 dom cdm 4363 ran crn 4364 “ cima 4366 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 |
This theorem is referenced by: cnvimarndm 4709 foima 5131 f1imacnv 5163 fsn2 5358 resfunexg 5403 funiunfvdm 5423 fnexALT 5760 uniqs2 6189 phplem4 6341 phplem4on 6353 |
Copyright terms: Public domain | W3C validator |