ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le Unicode version

Theorem ledivge1le 8803
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 8802 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  <_  1  <->  A  <_  B ) )
21adantr 270 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  <->  A  <_  B ) )
3 rerpdivcl 8764 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
43adantr 270 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  /  B
)  e.  RR )
5 1red 7134 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  1  e.  RR )
6 rpre 8740 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  C  e.  RR )
76adantl 271 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  C  e.  RR )
8 letr 7194 . . . . . . . . . 10  |-  ( ( ( A  /  B
)  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( ( A  /  B )  <_  1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
94, 5, 7, 8syl3anc 1169 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( ( A  /  B )  <_ 
1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
109expd 254 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
112, 10sylbird 168 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  <_  B  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
1211com23 77 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( 1  <_  C  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) )
1312expimpd 355 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( C  e.  RR+  /\  1  <_  C
)  ->  ( A  <_  B  ->  ( A  /  B )  <_  C
) ) )
1413ex 113 . . . 4  |-  ( A  e.  RR  ->  ( B  e.  RR+  ->  (
( C  e.  RR+  /\  1  <_  C )  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) ) )
15143imp1 1151 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  B
)  <_  C )
16 simp1 938 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  ->  A  e.  RR )
176adantr 270 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  C  e.  RR )
18 0lt1 7236 . . . . . . . . . 10  |-  0  <  1
19 0red 7120 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  0  e.  RR )
20 1red 7134 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  1  e.  RR )
21 ltletr 7200 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( 0  <  1  /\  1  <_  C )  ->  0  <  C
) )
2219, 20, 6, 21syl3anc 1169 . . . . . . . . . 10  |-  ( C  e.  RR+  ->  ( ( 0  <  1  /\  1  <_  C )  ->  0  <  C ) )
2318, 22mpani 420 . . . . . . . . 9  |-  ( C  e.  RR+  ->  ( 1  <_  C  ->  0  <  C ) )
2423imp 122 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  0  <  C )
2517, 24jca 300 . . . . . . 7  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  ( C  e.  RR  /\  0  <  C ) )
26253ad2ant3 961 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( C  e.  RR  /\  0  <  C ) )
27 rpregt0 8747 . . . . . . 7  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <  B ) )
28273ad2ant2 960 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( B  e.  RR  /\  0  <  B ) )
2916, 26, 283jca 1118 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
3029adantr 270 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
31 lediv23 7971 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3230, 31syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3315, 32mpbird 165 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  C
)  <_  B )
3433ex 113 1  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    < clt 7153    <_ cle 7154    / cdiv 7760   RR+crp 8734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-rp 8735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator