HomeHome Intuitionistic Logic Explorer
Theorem List (p. 89 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8801-8900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivlt1lt 8801 A real number divided by a positive real number is less than 1 iff the real number is less than the positive real number. (Contributed by AV, 25-May-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 /  B )  < 
 1 
 <->  A  <  B ) )
 
Theoremdivle1le 8802 A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 /  B )  <_ 
 1 
 <->  A  <_  B )
 )
 
Theoremledivge1le 8803 If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C )
 )  ->  ( A  <_  B  ->  ( A  /  C )  <_  B ) )
 
Theoremge0p1rpd 8804 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  ( A  +  1 )  e.  RR+ )
 
Theoremrerpdivcld 8805 Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  B )  e. 
 RR )
 
Theoremltsubrpd 8806 Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  -  B )  <  A )
 
Theoremltaddrpd 8807 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  A  <  ( A  +  B ) )
 
Theoremltaddrp2d 8808 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  A  <  ( B  +  A ) )
 
Theoremltmulgt11d 8809 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  A  <->  B  <  ( B  x.  A ) ) )
 
Theoremltmulgt12d 8810 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  A  <->  B  <  ( A  x.  B ) ) )
 
Theoremgt0divd 8811 Division of a positive number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 0  <  A  <->  0  <  ( A  /  B ) ) )
 
Theoremge0divd 8812 Division of a nonnegative number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 0  <_  A  <->  0  <_  ( A  /  B ) ) )
 
Theoremrpgecld 8813 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  B 
 <_  A )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremdivge0d 8814 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  0  <_  ( A  /  B ) )
 
Theoremltmul1d 8815 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
 
Theoremltmul2d 8816 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
 
Theoremlemul1d 8817 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
 
Theoremlemul2d 8818 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
 
Theoremltdiv1d 8819 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  /  C )  <  ( B 
 /  C ) ) )
 
Theoremlediv1d 8820 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  /  C )  <_  ( B 
 /  C ) ) )
 
Theoremltmuldivd 8821 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  x.  C )  <  B  <->  A  <  ( B 
 /  C ) ) )
 
Theoremltmuldiv2d 8822 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( C  x.  A )  <  B  <->  A  <  ( B 
 /  C ) ) )
 
Theoremlemuldivd 8823 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  x.  C )  <_  B  <->  A  <_  ( B 
 /  C ) ) )
 
Theoremlemuldiv2d 8824 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( C  x.  A )  <_  B  <->  A  <_  ( B 
 /  C ) ) )
 
Theoremltdivmuld 8825 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <  B  <->  A  <  ( C  x.  B ) ) )
 
Theoremltdivmul2d 8826 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <  B  <->  A  <  ( B  x.  C ) ) )
 
Theoremledivmuld 8827 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <_  B  <->  A  <_  ( C  x.  B ) ) )
 
Theoremledivmul2d 8828 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <_  B  <->  A  <_  ( B  x.  C ) ) )
 
Theoremltmul1dd 8829 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  x.  C )  < 
 ( B  x.  C ) )
 
Theoremltmul2dd 8830 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( C  x.  A )  < 
 ( C  x.  B ) )
 
Theoremltdiv1dd 8831 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  /  C )  < 
 ( B  /  C ) )
 
Theoremlediv1dd 8832 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  /  C )  <_  ( B  /  C ) )
 
Theoremlediv12ad 8833 Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  C 
 <_  D )   =>    |-  ( ph  ->  ( A  /  D )  <_  ( B  /  C ) )
 
Theoremltdiv23d 8834 Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  ( A  /  B )  <  C )   =>    |-  ( ph  ->  ( A  /  C )  <  B )
 
Theoremlediv23d 8835 Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  ( A  /  B ) 
 <_  C )   =>    |-  ( ph  ->  ( A  /  C )  <_  B )
 
Theoremlt2mul2divd 8836 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  x.  B )  <  ( C  x.  D )  <->  ( A  /  D )  <  ( C 
 /  B ) ) )
 
Theoremnnledivrp 8837 Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.)
 |-  ( ( A  e.  NN  /\  B  e.  RR+ )  ->  ( 1  <_  B 
 <->  ( A  /  B )  <_  A ) )
 
Theoremnn0ledivnn 8838 Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B )  <_  A )
 
Theoremaddlelt 8839 If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.)
 |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  ( ( M  +  A )  <_  N  ->  M  <  N ) )
 
3.5.2  Infinity and the extended real number system (cont.)
 
Syntaxcxne 8840 Extend class notation to include the negative of an extended real.
 class  -e A
 
Syntaxcxad 8841 Extend class notation to include addition of extended reals.
 class  +e
 
Syntaxcxmu 8842 Extend class notation to include multiplication of extended reals.
 class  xe
 
Definitiondf-xneg 8843 Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.)
 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
 
Definitiondf-xadd 8844* Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |- 
 +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
 
Definitiondf-xmul 8845* Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if (
 ( ( ( 0  <  y  /\  x  = +oo )  \/  (
 y  <  0  /\  x  = -oo ) )  \/  ( ( 0  <  x  /\  y  = +oo )  \/  ( x  <  0  /\  y  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  (
 ( 0  <  x  /\  y  = -oo )  \/  ( x  < 
 0  /\  y  = +oo ) ) ) , -oo ,  ( x  x.  y ) ) ) ) )
 
Theorempnfxr 8846 Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.)
 |- +oo  e.  RR*
 
Theorempnfex 8847 Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- +oo  e.  _V
 
Theoremmnfxr 8848 Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |- -oo  e.  RR*
 
Theoremltxr 8849 The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B )  \/  ( A  = -oo  /\  B  = +oo ) )  \/  ( ( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) ) )
 
Theoremelxr 8850 Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
 
Theorempnfnemnf 8851 Plus and minus infinity are different elements of  RR*. (Contributed by NM, 14-Oct-2005.)
 |- +oo  =/= -oo
 
Theoremmnfnepnf 8852 Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- -oo  =/= +oo
 
Theoremxrnemnf 8853 An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
 
Theoremxrnepnf 8854 An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )
 
Theoremxrltnr 8855 The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR*  ->  -.  A  <  A )
 
Theoremltpnf 8856 Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  ->  A  < +oo )
 
Theorem0ltpnf 8857 Zero is less than plus infinity (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  0  < +oo
 
Theoremmnflt 8858 Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  -> -oo  <  A )
 
Theoremmnflt0 8859 Minus infinity is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- -oo  <  0
 
Theoremmnfltpnf 8860 Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
 |- -oo  < +oo
 
Theoremmnfltxr 8861 Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
 |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )
 
Theorempnfnlt 8862 No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( A  e.  RR*  ->  -. +oo  <  A )
 
Theoremnltmnf 8863 No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( A  e.  RR*  ->  -.  A  < -oo )
 
Theorempnfge 8864 Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  e.  RR*  ->  A  <_ +oo )
 
Theorem0lepnf 8865 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  0  <_ +oo
 
Theoremnn0pnfge0 8866 If a number is a nonnegative integer or positive infinity, it is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
 |-  ( ( N  e.  NN0 
 \/  N  = +oo )  ->  0  <_  N )
 
Theoremmnfle 8867 Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  e.  RR*  -> -oo  <_  A )
 
Theoremxrltnsym 8868 Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  -.  B  <  A ) )
 
Theoremxrltnsym2 8869 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  ( A  <  B 
 /\  B  <  A ) )
 
Theoremxrlttr 8870 Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <  B  /\  B  <  C ) 
 ->  A  <  C ) )
 
Theoremxrltso 8871 'Less than' is a weakly linear ordering on the extended reals. (Contributed by NM, 15-Oct-2005.)
 |- 
 <  Or  RR*
 
Theoremxrlttri3 8872 Extended real version of lttri3 7191. (Contributed by NM, 9-Feb-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
 
Theoremxrltle 8873 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  A  <_  B )
 )
 
Theoremxrleid 8874 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.)
 |-  ( A  e.  RR*  ->  A  <_  A )
 
Theoremxrletri3 8875 Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
 
Theoremxrlelttr 8876 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <_  B  /\  B  <  C ) 
 ->  A  <  C ) )
 
Theoremxrltletr 8877 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <  B  /\  B  <_  C )  ->  A  <  C ) )
 
Theoremxrletr 8878 Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
 )
 
Theoremxrlttrd 8879 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrlelttrd 8880 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrltletrd 8881 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B  <_  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrletrd 8882 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  A  <_  C )
 
Theoremxrltne 8883 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  B  =/=  A )
 
Theoremnltpnft 8884 An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
 
Theoremngtmnft 8885 An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
 |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo 
 <  A ) )
 
Theoremxrrebnd 8886 An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
 |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
 
Theoremxrre 8887 A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B ) )  ->  A  e.  RR )
 
Theoremxrre2 8888 An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  ->  B  e.  RR )
 
Theoremxrre3 8889 A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B 
 <_  A  /\  A  < +oo ) )  ->  A  e.  RR )
 
Theoremge0gtmnf 8890 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <_  A ) 
 -> -oo  <  A )
 
Theoremge0nemnf 8891 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <_  A ) 
 ->  A  =/= -oo )
 
Theoremxrrege0 8892 A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0 
 <_  A  /\  A  <_  B ) )  ->  A  e.  RR )
 
Theoremz2ge 8893* There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. k  e.  ZZ  ( M  <_  k  /\  N  <_  k ) )
 
Theoremxnegeq 8894 Equality of two extended numbers with  -e in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  =  B  -> 
 -e A  =  -e B )
 
Theoremxnegpnf 8895 Minus +oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
 |-  -e +oo  = -oo
 
Theoremxnegmnf 8896 Minus -oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
 |-  -e -oo  = +oo
 
Theoremrexneg 8897 Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR  -> 
 -e A  =  -u A )
 
Theoremxneg0 8898 The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  -e 0  =  0
 
Theoremxnegcl 8899 Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  -e A  e.  RR* )
 
Theoremxnegneg 8900 Extended real version of negneg 7358. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  -e  -e A  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >