ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq Unicode version

Theorem ltbtwnnqq 6605
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltbtwnnqq
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6555 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4410 . . . 4  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
32simpld 110 . . 3  |-  ( A 
<Q  B  ->  A  e. 
Q. )
4 ltexnqi 6599 . . 3  |-  ( A 
<Q  B  ->  E. y  e.  Q.  ( A  +Q  y )  =  B )
5 nsmallnq 6603 . . . . . 6  |-  ( y  e.  Q.  ->  E. z 
z  <Q  y )
61brel 4410 . . . . . . . . . . . . . . 15  |-  ( z 
<Q  y  ->  ( z  e.  Q.  /\  y  e.  Q. ) )
76simpld 110 . . . . . . . . . . . . . 14  |-  ( z 
<Q  y  ->  z  e. 
Q. )
8 ltaddnq 6597 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
97, 8sylan2 280 . . . . . . . . . . . . 13  |-  ( ( A  e.  Q.  /\  z  <Q  y )  ->  A  <Q  ( A  +Q  z ) )
109ancoms 264 . . . . . . . . . . . 12  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
1110adantr 270 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  A  <Q  ( A  +Q  z ) )
12 ltanqi 6592 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  ( A  +Q  z
)  <Q  ( A  +Q  y ) )
1312adantr 270 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  <Q  ( A  +Q  y ) )
14 breq2 3789 . . . . . . . . . . . . 13  |-  ( ( A  +Q  y )  =  B  ->  (
( A  +Q  z
)  <Q  ( A  +Q  y )  <->  ( A  +Q  z )  <Q  B ) )
1514adantl 271 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( ( A  +Q  z )  <Q 
( A  +Q  y
)  <->  ( A  +Q  z )  <Q  B ) )
1613, 15mpbid 145 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  <Q  B )
17 addclnq 6565 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  ( A  +Q  z
)  e.  Q. )
187, 17sylan2 280 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Q.  /\  z  <Q  y )  -> 
( A  +Q  z
)  e.  Q. )
1918ancoms 264 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  A  e.  Q. )  ->  ( A  +Q  z
)  e.  Q. )
2019adantr 270 . . . . . . . . . . . 12  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( A  +Q  z )  e.  Q. )
21 breq2 3789 . . . . . . . . . . . . . 14  |-  ( x  =  ( A  +Q  z )  ->  ( A  <Q  x  <->  A  <Q  ( A  +Q  z ) ) )
22 breq1 3788 . . . . . . . . . . . . . 14  |-  ( x  =  ( A  +Q  z )  ->  (
x  <Q  B  <->  ( A  +Q  z )  <Q  B ) )
2321, 22anbi12d 456 . . . . . . . . . . . . 13  |-  ( x  =  ( A  +Q  z )  ->  (
( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2423adantl 271 . . . . . . . . . . . 12  |-  ( ( ( ( z  <Q 
y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  /\  x  =  ( A  +Q  z ) )  -> 
( ( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2520, 24rspcedv 2705 . . . . . . . . . . 11  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  ( ( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z )  <Q  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
2611, 16, 25mp2and 423 . . . . . . . . . 10  |-  ( ( ( z  <Q  y  /\  A  e.  Q. )  /\  ( A  +Q  y )  =  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
27263impa 1133 . . . . . . . . 9  |-  ( ( z  <Q  y  /\  A  e.  Q.  /\  ( A  +Q  y )  =  B )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
28273coml 1145 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B  /\  z  <Q  y )  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
29283expia 1140 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( z  <Q 
y  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3029exlimdv 1740 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( E. z 
z  <Q  y  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
315, 30syl5 32 . . . . 5  |-  ( ( A  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( y  e. 
Q.  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3231impancom 256 . . . 4  |-  ( ( A  e.  Q.  /\  y  e.  Q. )  ->  ( ( A  +Q  y )  =  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
3332rexlimdva 2477 . . 3  |-  ( A  e.  Q.  ->  ( E. y  e.  Q.  ( A  +Q  y
)  =  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
343, 4, 33sylc 61 . 2  |-  ( A 
<Q  B  ->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
35 ltsonq 6588 . . . 4  |-  <Q  Or  Q.
3635, 1sotri 4740 . . 3  |-  ( ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
3736rexlimivw 2473 . 2  |-  ( E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
3834, 37impbii 124 1  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   Q.cnq 6470    +Q cplq 6472    <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543
This theorem is referenced by:  ltbtwnnq  6606  nqprrnd  6733  appdivnq  6753  ltnqpr  6783  ltnqpri  6784  recexprlemopl  6815  recexprlemopu  6817  cauappcvgprlemopl  6836  cauappcvgprlemopu  6838  cauappcvgprlem2  6850  caucvgprlemopl  6859  caucvgprlemopu  6861  caucvgprlem2  6870
  Copyright terms: Public domain W3C validator