| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemopl | Unicode version | ||
| Description: Lemma for cauappcvgpr 6852. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f |
|
| cauappcvgpr.app |
|
| cauappcvgpr.bnd |
|
| cauappcvgpr.lim |
|
| Ref | Expression |
|---|---|
| cauappcvgprlemopl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5539 |
. . . . . . 7
| |
| 2 | 1 | breq1d 3795 |
. . . . . 6
|
| 3 | 2 | rexbidv 2369 |
. . . . 5
|
| 4 | cauappcvgpr.lim |
. . . . . . 7
| |
| 5 | 4 | fveq2i 5201 |
. . . . . 6
|
| 6 | nqex 6553 |
. . . . . . . 8
| |
| 7 | 6 | rabex 3922 |
. . . . . . 7
|
| 8 | 6 | rabex 3922 |
. . . . . . 7
|
| 9 | 7, 8 | op1st 5793 |
. . . . . 6
|
| 10 | 5, 9 | eqtri 2101 |
. . . . 5
|
| 11 | 3, 10 | elrab2 2751 |
. . . 4
|
| 12 | 11 | simprbi 269 |
. . 3
|
| 13 | 12 | adantl 271 |
. 2
|
| 14 | simprr 498 |
. . . 4
| |
| 15 | ltbtwnnqq 6605 |
. . . 4
| |
| 16 | 14, 15 | sylib 120 |
. . 3
|
| 17 | simplrl 501 |
. . . . . . . 8
| |
| 18 | 11 | simplbi 268 |
. . . . . . . . 9
|
| 19 | 18 | ad3antlr 476 |
. . . . . . . 8
|
| 20 | ltaddnq 6597 |
. . . . . . . 8
| |
| 21 | 17, 19, 20 | syl2anc 403 |
. . . . . . 7
|
| 22 | addcomnqg 6571 |
. . . . . . . 8
| |
| 23 | 17, 19, 22 | syl2anc 403 |
. . . . . . 7
|
| 24 | 21, 23 | breqtrd 3809 |
. . . . . 6
|
| 25 | simprrl 505 |
. . . . . 6
| |
| 26 | ltsonq 6588 |
. . . . . . 7
| |
| 27 | ltrelnq 6555 |
. . . . . . 7
| |
| 28 | 26, 27 | sotri 4740 |
. . . . . 6
|
| 29 | 24, 25, 28 | syl2anc 403 |
. . . . 5
|
| 30 | simprl 497 |
. . . . . 6
| |
| 31 | ltexnqq 6598 |
. . . . . 6
| |
| 32 | 17, 30, 31 | syl2anc 403 |
. . . . 5
|
| 33 | 29, 32 | mpbid 145 |
. . . 4
|
| 34 | 25 | ad2antrr 471 |
. . . . . . . . . 10
|
| 35 | 19 | ad2antrr 471 |
. . . . . . . . . . . 12
|
| 36 | 17 | ad2antrr 471 |
. . . . . . . . . . . 12
|
| 37 | addcomnqg 6571 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | syl2anc 403 |
. . . . . . . . . . 11
|
| 39 | 38 | breq1d 3795 |
. . . . . . . . . 10
|
| 40 | 34, 39 | mpbid 145 |
. . . . . . . . 9
|
| 41 | simpr 108 |
. . . . . . . . 9
| |
| 42 | 40, 41 | breqtrrd 3811 |
. . . . . . . 8
|
| 43 | simplr 496 |
. . . . . . . . 9
| |
| 44 | ltanqg 6590 |
. . . . . . . . 9
| |
| 45 | 35, 43, 36, 44 | syl3anc 1169 |
. . . . . . . 8
|
| 46 | 42, 45 | mpbird 165 |
. . . . . . 7
|
| 47 | simprrr 506 |
. . . . . . . . . . 11
| |
| 48 | 47 | ad2antrr 471 |
. . . . . . . . . 10
|
| 49 | addcomnqg 6571 |
. . . . . . . . . . . . 13
| |
| 50 | 36, 43, 49 | syl2anc 403 |
. . . . . . . . . . . 12
|
| 51 | 50, 41 | eqtr3d 2115 |
. . . . . . . . . . 11
|
| 52 | 51 | breq1d 3795 |
. . . . . . . . . 10
|
| 53 | 48, 52 | mpbird 165 |
. . . . . . . . 9
|
| 54 | rspe 2412 |
. . . . . . . . 9
| |
| 55 | 36, 53, 54 | syl2anc 403 |
. . . . . . . 8
|
| 56 | oveq1 5539 |
. . . . . . . . . . 11
| |
| 57 | 56 | breq1d 3795 |
. . . . . . . . . 10
|
| 58 | 57 | rexbidv 2369 |
. . . . . . . . 9
|
| 59 | 58, 10 | elrab2 2751 |
. . . . . . . 8
|
| 60 | 43, 55, 59 | sylanbrc 408 |
. . . . . . 7
|
| 61 | 46, 60 | jca 300 |
. . . . . 6
|
| 62 | 61 | ex 113 |
. . . . 5
|
| 63 | 62 | reximdva 2463 |
. . . 4
|
| 64 | 33, 63 | mpd 13 |
. . 3
|
| 65 | 16, 64 | rexlimddv 2481 |
. 2
|
| 66 | 13, 65 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 |
| This theorem is referenced by: cauappcvgprlemrnd 6840 |
| Copyright terms: Public domain | W3C validator |