| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmul1 | Unicode version | ||
| Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltmul1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1a 7691 |
. . 3
| |
| 2 | 1 | ex 113 |
. 2
|
| 3 | recexgt0 7680 |
. . . 4
| |
| 4 | 3 | 3ad2ant3 961 |
. . 3
|
| 5 | simpl1 941 |
. . . . . . . . . 10
| |
| 6 | simpl3l 993 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | remulcld 7149 |
. . . . . . . . 9
|
| 8 | simpl2 942 |
. . . . . . . . . 10
| |
| 9 | 8, 6 | remulcld 7149 |
. . . . . . . . 9
|
| 10 | simprl 497 |
. . . . . . . . . 10
| |
| 11 | simprrl 505 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | jca 300 |
. . . . . . . . 9
|
| 13 | 7, 9, 12 | 3jca 1118 |
. . . . . . . 8
|
| 14 | ltmul1a 7691 |
. . . . . . . 8
| |
| 15 | 13, 14 | sylan 277 |
. . . . . . 7
|
| 16 | 5 | recnd 7147 |
. . . . . . . . 9
|
| 17 | 16 | adantr 270 |
. . . . . . . 8
|
| 18 | 6 | recnd 7147 |
. . . . . . . . 9
|
| 19 | 18 | adantr 270 |
. . . . . . . 8
|
| 20 | 10 | recnd 7147 |
. . . . . . . . 9
|
| 21 | 20 | adantr 270 |
. . . . . . . 8
|
| 22 | 17, 19, 21 | mulassd 7142 |
. . . . . . 7
|
| 23 | 8 | recnd 7147 |
. . . . . . . . 9
|
| 24 | 23 | adantr 270 |
. . . . . . . 8
|
| 25 | 24, 19, 21 | mulassd 7142 |
. . . . . . 7
|
| 26 | 15, 22, 25 | 3brtr3d 3814 |
. . . . . 6
|
| 27 | simprrr 506 |
. . . . . . . 8
| |
| 28 | 27 | adantr 270 |
. . . . . . 7
|
| 29 | 28 | oveq2d 5548 |
. . . . . 6
|
| 30 | 28 | oveq2d 5548 |
. . . . . 6
|
| 31 | 26, 29, 30 | 3brtr3d 3814 |
. . . . 5
|
| 32 | 17 | mulid1d 7136 |
. . . . 5
|
| 33 | 24 | mulid1d 7136 |
. . . . 5
|
| 34 | 31, 32, 33 | 3brtr3d 3814 |
. . . 4
|
| 35 | 34 | ex 113 |
. . 3
|
| 36 | 4, 35 | rexlimddv 2481 |
. 2
|
| 37 | 2, 36 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-ltxr 7158 df-sub 7281 df-neg 7282 |
| This theorem is referenced by: lemul1 7693 reapmul1lem 7694 ltmul2 7934 ltdiv1 7946 ltdiv23 7970 recp1lt1 7977 ltmul1i 7998 ltmul1d 8815 flodddiv4t2lthalf 10337 |
| Copyright terms: Public domain | W3C validator |